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Abstract. In this study, we propose a novel data analysis approach
that can be used for multi-view analysis and integration of heteroge-
neous temporal data originating from multiple sources. The proposed
approach consists of several distinctive layers: (i) select a suitable set
(view) of parameters in order to identify characteristic behaviour within
each individual source (ii) exploit an alternative set (view) of raw param-
eters (or high-level features) to derive some complementary representa-
tions (e.g. related to source performance) of the results obtained in the
first layer with the aim to facilitate comparison and mediation across the
different sources (iii) integrate those representations in an appropriate
way, allowing to trace back similar cross-source performance to certain
characteristic behaviour of the individual sources.
The validity and the potential of the proposed approach has been demon-
strated on a real-world dataset of a fleet of wind turbines.

Keywords: Data Integration · Data Mining · Temporal Data Cluster-
ing· Multi-view Learning.

1 Introduction

Mining data collected from continuous monitoring of industrial assets in the field
allows to derive relevant insights about their operations and performance. Such
complex real-world datasets are usually composed of heterogeneous subsets (or
multi-views) of parameters, which should be considered explicitly during analysis
in order to exploit fully the richness of the data. For instance, the performance
of an industrial asset is impacted by a diverse set of factors e.g. operating modes
concerned with the internal working of the asset and exogeneous factors such as
weather conditions. However, it is not trivial to directly link or trace back certain
performance to distinct operating modes due to the multitude of influencing
factors, which are often also highly interdependent.
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In addition, real-world datasets often originate from different sources, which
may differ in period coverage, resolution, data quality, technical configuration,
etc. Pooling multi-source datasets together, which is often done to increase statis-
tical representativeness, requires standardization and normalization, which often
leads to information loss and may mask source-specific features. For instance,
mining for distinct operating modes is more appropriate to be pursued per asset,
rather than pooling everything together, since not all assets might go through
all operating modes. This implies that one might need to approach multi-source
analysis in an incremental fashion rather than aiming for brute force integration
of all the available data.

Classical data mining and analysis approaches have still some shortcomings
in this aspect aiming at delivering a total integration solution at once. An al-
ternative approach is to exploit the multi-view nature of the data. Some
rewarding techniques of multi-view mining have been already proposed in the
literature [1,14]. However, they all were concerned with single-source datasets
and dedicated to one specific mining approach (e.g. clustering, deep learning or
classification). This research provides a general analysis methodology, which is
agnostic to the specific mining techniques used and focuses on the following key
aspects: initial individual analysis per source in order to preserve the richness
and the authenticity of each source; individual mediation analysis per source
aiming at bringing the sources closer together; cross-source integration analysis
aiming at leveraging analysis results across the sources without compromising
their individual characteristics.

More concretely, the proposed approach consists of several distinctive layers:
(i) select a suitable set (view) of parameters in order to identify characteristic
behaviour within each individual source (ii) exploit an alternative set (view) of
raw parameters (or high-level features) to derive some complementary represen-
tations (e.g. related to source performance) of the results obtained in the first
layer with the aim to facilitate comparison and mediation across the different
sources (iii) integrate those representations in an appropriate way, allowing to
trace back similar cross-source performance to certain characteristic behaviour
of the individual sources.

The validity and the potential of the proposed approach have been demon-
strated on a real-world dataset of a fleet of wind turbines. We have been able
to identify distinctive profiles of production performance and subsequently, have
been able to establish an explicit link between those performance profiles and
well characterised operating modes.

The rest of the paper is organised as follows. Section 2 reviews related work
and discusses the rationale motivating the proposed approach. Section 4 intro-
duces the used methods and formally describes the proposed layered integration
approach. Data and experimental setting used for the evaluation purposes are
explained in Section 5. Section 6 presents the evaluation of the proposed ap-
proach and discusses the obtained results. Section 7 is devoted to conclusions
and future work.
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2 Related Work and Rationale

Multi-view datasets consist of multiple data representations or views, where
each one may contain several features [5]. There are many scenarios where data
can be described from multiple views [14]. In such multi-view scenarios it is
more interesting to consider the diversity of different views rather than simply
concatenating them. Furthermore, remote sensor technologies are very accessible
these days, resulting in the appearance of high frequency sensor data collected
for all kinds of environments and assets. Despite the accelerated development of
mining techniques for multi-source data, managing and interpreting multi-source
data is still very challenging. [15]

One way to exploit multi-source data is by data integration. Data integration
is the combination of data from distinct data sources into a meaningful and useful
format. It can either aim to bring data together for the purpose of visualization
or fuse them together in one integrated dataset. Three main approaches have
been developed [6]: (i) Schema mapping : a global mediating schema is used,
e.g. by defining mappings between the distinct schemas of each data source;
(ii) Record linkage: records that refer to the same entry across distinct data
sources are matched together; (iii) Data fusion: data from distinct data sources
are combined by probabilistic algorithms. One major risk in constructing an
integrated dataset is the risk on losing source-specific characteristics.

2.1 Challenges Related to Real-world Datasets

In this research, we consider real-world datasets originating from multiple data
sources, e.g. fleet data. An asset within the fleet captures data from multiple
sensors and each sensor can moreover have a different accuracy and reliability.
Two main issues arise when one wants to mine such complex real-world datasets.

First of all, exploiting fully all the properties of the captured data is not triv-
ial since it is composed out of several heterogeneous subsets of parameters.
Consider data generated by wind turbines, consisting of sensor data of oper-
ational parameters, such as oil temperatureand rotor speed, on the one hand,
and data about power production in function of different exogeneous factors
such as wind speedand outside temperature, on the other hand. Mining such
data considering all the parameters at once is often not the best thing to do
since the operational parameters are typically analysed in time, while the power
production is better monitored as a function of the weather conditions.

In addition, taking into account and combining the information from the
different sources, such as the fleet of turbines, is far from trivial. Each source
may differ in period coverage, resolution, data quality, technical configuration,
etc. To optimally use all information one could pool all multi-source datasets to-
gether. However, this requires suitable standardisation and normalisation, which
could lead to information loss and may mask source-specific parameters. As ex-
ample one may want to cluster timestamps according to their behaviour in case
of wind turbines. However, rather than pooling everything together it is more
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appropriate to do that per turbine since not all turbines might go through all
operating modes and pooling data would lead to noise/sub-optimal clusters.

2.2 Multi-view Learning

Multi-view learning is a semi-supervised approach that aims to obtain better
performance by using the relationship between different views [14]. Multi-view
unsupervised learning and specifically multi-view clustering has attracted great
attention recently due to availability of inexpensive unlabelled data in many ap-
plication domains [5]. The goal of multi-view clustering is to find groups of similar
objects based on multiple data representations. In the past, multi-view cluster-
ing approaches have shown to outperform the single-view clustering approach in
case of true single-source multi-view datasets. A multi-view clustering approach
uses a conditional independence assumption of the different views [1]. However,
a perfect conditional independence of different views is almost impossible in real-
world datasets. Fortunately, in [7] one illustrates that in a more realistic case
where each group (layer) of parameters is not perfectly independent, a similar
approach can also be applied to outperform single-view clustering. The latter is
called multi-layer clustering. However, a point of attention in those hierarchical
clustering approaches is the tendency to construct too small clusters [1].

Hierarchical approaches are not only advantageous in cluster tasks, but can
be used in all kinds of data mining strategies. In [14], a comparison is made con-
cerning multiple multi-view learning techniques. The authors’ main conclusion is
that multi-view learning is effective and promising in practice, but there is still
a lot of work to be done to make them useful in a wide variety of applications.

In this paper we propose a multi-layer data analysis methodology which
cleverly benefits from the multi-view approach and demonstrates its potential to
deal with multi-source data when applied in a well designed incremental fashion.

3 Use Case Context and Ambition

The proposed layered integration methodology is demonstrated on public sen-
sor data originating from a fleet of wind turbines. The initial ambition of the
studied experimental scenario is to identify and characterise potentially differ-
ent operating modes across the fleet. Notice that wind turbines can have several
different operating modes, e.g. working at full speed, reduced speed in order to
limit the noise burden on the surroundings, tailored production due to oversup-
ply on the net and others. Subsequently, the ultimate goal is to derive distinctive
profiles of production performance and establish an explicit link between those
performance profiles and the characterised operating modes.

Two main types of input data sources are used to capture the operation
of a wind turbine: operational (endogeneous) and environmental (exogeneous)
parameters. The former are referring to sensors measuring the internal working
of the turbine, such as oil temperature and rotor speed, while the latter are
considering different exogeneous factors impacting the production, such as wind
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speed and temperature. The performance of a wind turbine is typically expressed
in terms of the produced active power as a function of the wind speed, called
power curve and visualised as depicted in Figure 2b. A power curve typically
has an S shape. Based on this curve, one can derive roughly the expected active
power based on a certain wind speed. It is not trivial/possible to determine
whether a particular production performance is as expected or there is some
deviation since the impact of the internal working of the turbine is not explicitly
considered. The same active power output may be induced by different operating
modes of the turbine given the same exogeneous context.

The ultimate goal of our analysis is to derive an explicit link between the
internal working modes (different compositions of the endogeneous parameters)
and the expected output (active power) at fleet level. This will enable for quan-
titative labelling of the turbine operation with respect to the whole fleet, e.g.
”as the rest of the fleet”, ”under-performing”, ”better than the fleet”.

4 Methods and Proposed Approach

4.1 Clustering Analysis

Three partitioning algorithms are commonly used for data analysis to divide the
data objects into k disjoint clusters [10]: k-means, k-medians, and k-medoids
clustering. The three partitioning methods differ in how the cluster center is
defined. In k-means clustering, the cluster center is defined as the mean data
vector averaged over all objects in the cluster. In k-medians, the median is cal-
culated for each dimension in the data vector to create the centroid. Finally, in
k-medoids clustering, the cluster center is defined as the object with the smallest
sum of distances to all other objects in the cluster.

The partitioning algorithms contain the number of clusters (k) as a param-
eter and their major drawback is the lack of prior knowledge for that number
to construct. Unfortunately, determining a correct, or suitable, k is a difficult
problem in a real-world dataset. For such cases, researchers usually generate
clustering results for different numbers of clusters, and subsequently assess the
quality of the obtained clustering solutions.

In the context of the presented study, we have no prior knowledge about the
underlying structure of the data. Thus, we use four internal validation measures
for analyzing the data and select the optimal clustering scheme. We have selected
two validation measure for assessing compactness and separation properties -
Silhouette Index [11] and Davis-Bouldin Index [4], one for assessing connectedness
- Connectivity [8], and one for assessing the ratio of the within-cluster variance
with the overall-between cluster variance - Calinski Harabasz Index [3].

4.2 Kernel Density Estimation (KDE)

As the name suggests KDE is a non-parametric method to estimate the probabil-
ity density function of a random variable density by use of a kernel. Practically,
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the KDE f ′b is constructed by averaging the sum of a density estimation for each
sample X1, X2...Xn, as shown in Equation (1). In this formula, K is a kernel
function of choice, which needs to be symmetric around zero. Often one uses a
Gaussian kernel (see Equation (2)) [12].
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In Equation (1), the hyperparameter bandwidth b acts as a smoothing factor.
A large b will spread the kernel function, resulting in a very smooth KDE.
However, if b gets too large, a lot of information is smoothed out. Since the
ground truth is often unknown, some rules of thumb have been developed in
the past. Amongst others, Silverman’s rule is often used. This rule is defined as

b = (n(d+ 2)/4)
−1/(d+4)

, with d the number of dimensions [13].

4.3 Hypercube Binning Approach

The hypercube approach is a method to characterise (discretize) data by a multi
dimensional binning approach. A hypercube is defined as a cube of N dimen-
sions. Hypercube binning can be very useful when analysing multi-dimensional
data since by dividing the parameter space into cubes, one can derive properties
of interest for each cube. These properties might be for example the median,
standard deviation or even the KDE of a (not yet used) parameter. The as-
sumption is that the data points characterized with similar parameter values (so
they end up in the same hypercube), exhibit similar properties.

4.4 Layered Multi-view Analysis: General Approach

In this study, we propose a novel approach for analysing complex real-world time
series data. It is inspired by some previous study of Boeva et al. [2] dealing with
the analysis of high-dimensional multivariate data generated in several different
experiments. We have conceived a more generic approach, based on the idea
that different in nature data parameters form distinctive views of the data and
should be considered for separate analysis in a multilayered fashion.

Suppose that a particular phenomenon (e.g. biological/chemical process, phys-
ical asset, etc.) is monitored in time via multiple data capturing measurements of
different nature (e.g. experimental setup, machine configuration, high-throughput
measurements, operational parameters, exogeneous factors, etc.). This will re-
sult in collecting measurements of several parameters that each contains part
of the relevant information. Furthermore, data analysis can often benefit from
considering (pooling together) data from multiple observations/sources of the
phenomenon under study, e.g. in case of biological or chemical processes multiple
datasets generated in different experimental conditions are frequently explored
together, while in industrial contexts datasets originating from a portfolio or a
fleet of industrial assets are often consolidated for analysis.
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Subsequently, let us assume that we have access to data of N different sources
(e.g. a fleet of wind turbines) of the phenomenon under study monitored via n
different types of parameters, which are the same across the different observa-
tions/sources, while the time periods covered, the data quality and the capturing
resolution are not necessary the same and may vary across the sources.

Formally, the main steps (layers) of the proposed multi-view data analysis
approach are explained in the subsections below. The overall data corpus is
composed of N different datasets (multi-variate time series) D1, D2, . . . , DN ,
one per source i (i = 1, 2, . . . , N). Each individual dataset is composed of n time
series Di = {Di1, Di2, . . . , Din}, one per monitored parameter.

Individual Analysis Layer (View 1) This layer is concerned with individual
per source data analysis, focusing on a subset of relevant parameters allowing to
drill down for insights without the necessity to compromise across all sources.

(a) Select a subset of p common in nature parameters across the different sources
based on the following criteria:
• the selected subset of parameters provides comprehensive view about a

particular aspect(s) (e.g. behavioural, operational or other characteris-
tics) of the studied phenomenon

• it is feasible to pool together per individual source the corresponding
time series for analysis (e.g. cover the same time window and have the
same resolution per observation).

(b) For each source i, the corresponding time series Dij1 , Dij2 , . . . , Dijp , one per
monitored parameter j, (j = 1, 2, . . . , p), are subsequently integrated into a
dataset Dip of dimensions p by ti (the size of the covered time window per
source i), (i = 1, 2, . . . , N).

(c) Subsequently, each matrix Dip per source i, (i = 1, 2, . . . , N) is individually
subjected to a suitable analysis (e.g. clustering, regression or classification).

(d) Thus, for each source i, (i = 1, 2, . . . , N), the foregoing data analysis step
has generated a set of results or data models (e.g. clusters or regression
functions) Ri1, Ri2, . . . , Riki

, where ki is a source specific parameter.

Mediation Analysis Layer (View 2) This analysis layer is building upon the
results from the previous layer by considering an alternative subset of parameters
(view) allowing to derive comparative insights across the sources.

(a) Select a subset of q parameters across all sources based on the criteria:
• the parameters offer an alternative complementary view (representation)

of the results obtained per source in the individual analysis layer
• the obtained complementary representations allow for follow up compar-

ative analysis across the different sources.
(b) For each source i, the corresponding time series Dij1 , Dij2 , . . . , Dijq , one

per selected parameter j, (j = 1, 2, . . . , q), are subsequently joined together
to construct a complementary dataset CDili for each result Rili , (li =
1, 2, . . . , ki, i = 1, 2, . . . , N).
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(c) Subsequently, each complementary dataset CDili per source i, is subjected
to a suitable further analyse (e.g. profiling or clustering) leading to comple-
mentary results CRili , (li = 1, 2, . . . , ki, i = 1, 2, . . . , N). The latter can be
easily interpreted and compared across the different sources and are uniquely
associated with the corresponding results obtained from the previous layer.

Integration Analysis Layer (Linking the Views) This analysis layer is
concerned with leveraging the results obtained in the previous analysis layers
across the different sources. The ultimate goal is to derive an explicit link between
the results generated in the different views.

(a) The results, obtained for each source in the mediation layer, are pooled
together, i.e., the following dataset is composed CRili , (i = 1, 2, . . . , N ,
li = 1, 2, . . . , ki) and subjected to consolidation, e.g. grouping similar results.
In this way a cross-source integration is achieved delivering a smaller number
of representative, across the different sources, results Sr (r = 1, . . . ,m) where
m ≤ k1 + . . .+ ki since each Sr is derived from a subset of CRili .

(b) Subsequently, for each Sr (r = 1, . . . ,m) a unique link can be established
with different subsets of the initial results obtained in the very first individual
analysis layer i.e. Rili , (i = 1, 2, . . . , N , li = 1, 2, . . . , ki). For instance, Sr

can potentially define some unique representations or labels of distinctive
classes formed by the corresponding Rili subsets.

4.5 Layered Multi-view Analysis: Instantiated in the Use Case

The layered multi-view analysis approach, introduced in Section 4.4, is instan-
tiated for the considered fleet of wind turbines use case described in Section 3.
The overall approach is visualised in Figure 1.

Recall that, two main types of input data sources are used to capture the
operation of a wind turbine: operational (endogeneous) and environmental (exo-
geneous) parameters. The former are referring to sensors measuring the internal
working of the turbine, such as oil temperature and rotor speed, while the latter
are considering different exogeneous factors impacting the production, such as
wind speed, wind direction and temperature.

Individual Analysis Layer: Operating Mode Characterisation (Internal
View) This layer is concerned with data analysis only from the perspective of
the internal working of each turbine detached from the other influencing factors
i.e. based solely on the operational parameters. The aim is to derive clusters
of timestamps with characteristic operating behaviour (operating modes) per
turbine. Rather than pooling everything together, it is more appropriate to do
that per turbine since it may occur that not all turbines go through all operating
modes for the considered time period and pooling data would lead to noise/sub-
optimal clusters. Moreover, the datasets constructed per turbine may differ in
period coverage since considering only the common period coverage may lead to
a substantial reduction of the data and also mask some source-specific features.
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Fig. 1. Layered integration approach for the use case of fleet of wind turbines.

Subsequently for each turbine, a number of clusters are derived grouping
together timestamps for which the values of the operational parameters relate
to each other in a similar way. It is not necessarily expected that the same number
of clusters will be derived for each turbine since as already mentioned above not
all turbines go through all operating modes for the considered time periods. The
assumption is that each cluster is representing a distinctive operating mode of the
turbine. Each cluster will define a range of allowable values for each operational
parameter and thus generates parametric characterisation of the mode. In this
way, the pool of clusters produced for the fleet leads to the construction of a
repository of operating modes as depicted in the left panel of Figure 1.

Mediation Layer: Performance Profiling (Exogeneous View) In this
layer, we pursue a way to derive an alternative representation of each operating
mode in terms of expected performance. The richness of our multivariate data
allows to consider an alternative view for each cluster of timestamps generated
in the previous layer. For instance, it can be useful for monitoring purposes to
have an estimation of how likely is to observe certain production output for a
given exogeneous context (i.e., wind speed, wind direction and temperature).

Thus for each cluster of timestamps, from the previous layer, a dedicated
dataset can be constructed, composed of the corresponding values for wind speed,
wind direction, temperature and active power. Such a dataset can be used to
derive some performance profile per cluster estimating the expected production
of active power. However, the active power behaviour might vary substantially
for different exogeneous contexts or in other words for different combinations
of the values of the 3 parameters wind speed, wind direction and temperature.
Therefore, we will be pursuing the construction of performance profile per cluster
in an incremental fashion by using the hypercube binning approach in order to
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limit as much as possible the impact of the exogeneous factors. The approach is
described in more details below:

1. Hypercube binning In order to split the active power points into subsets pro-
duced in similar context, i.e. exogeneous parameters with similar values, the
hypercube binning approach as explained in Section 4.3 is applied on each
cluster dataset. The number of generated hypercubes depends on the gran-
ularity of the binning step. The higher the granularity, the more hypercubes
will be constructed per cluster, the less points will be contained at average
in each hypercube.

2. Individual probability distributions per hypercube As described in the previ-
ous step, each hypercube represents a group of similar points from perspec-
tive of the exogeneous context. Subsequently, the probability density of the
active power can be estimated using the KDE approach from Section 4.2

3. Mixture probability distributions per cluster The individual distributions de-
rived in the previous step per hypercube in a given cluster are subsequently
combined to form mixture distributions for this cluster.

The derived mixture distributions per cluster (see the middle panel of Figure 1)
can be interpreted as distinctive probabilistic profiles of the expected perfor-
mance in terms of active power produced. It is also important to note that the
actual operating mode (the ranges of allowable values for each operational pa-
rameter) generating this performance profile can be traced back through the
cluster characterisation in the previous layer.

Integration Layer: Fleet-wide Performance Labeling (Mixed View) As
result of the previous two layers, a repository of operating modes can be con-
structed, where each operating mode is: 1) characterised in terms of allowable
ranges of the operational parameters; 2) associated with a probabilistic profile
of expected production. However, the different operating modes have been de-
rived by treating the data of each turbine separately, which does not allow for
knowledge transfer and model leverage across the fleet. For instance, consider-
ing each set of characterised operating modes per turbine separately is much too
limiting since some operating modes might not be observed for some turbines for
the considered time window. The latter does not exclude that they might occur
in the future. Subsequently, not sharing the operating mode characterisations
across the fleet might result into too high rate of unseen operating modes per
turbine or in other words high rate of false detection of anomalous operation.
Moreover, it is also expected that several different operating modes might be
exhibiting very similar production performance.

It is interesting to investigate how many distinct classes/profiles of produc-
tion performance are detectable at fleet level. The associated with each operating
mode probabilistic profiles of expected production can be compared directly with
each other since they all are probability density functions of the active power.
Subsequently, all the profiles are pooled together and subjected to clustering.
In this way, several distinctive profiles of production performance are derived



Layered Integration Approach for Multi-view Analysis of Temporal Data 11

across the fleet (see the right panel of Figure 1) and subsequently, an explicit
link between those performance profiles and the characterised operating modes
can be established.

5 Dataset and Implementation

The proposed approach has been validated using public SCADA4 data originat-
ing from a wind turbine fleet of Engie, located in La Haute Borne. The dataset
contains measurements of a fleet of 4 wind turbines collected with a 10-minute
interval for 31 parameters, listed on GitHub. The data is collected between Jan-
uary 2009 and March 2017.

5.1 Data Preprocessing

Eliminating Correlated Parameters Some of the monitored parameters in
the Engie dataset produce values which are highly correlated due to several rea-
sons 1) monitoring the same phenomenon with multiple sensors, e.g. the nacelle
of each turbine is equipped with 2 different anemometers both measuring the
wind speed; 2) derived parameters, e.g. the measured wind speed by the two
nacelle anemometers is used to calculate the average wind speed; 3) internal
dependencies between some parameters, e.g. generator speed and generator con-
verter speed. Therefore in order to avoid over-fitting, only one parameter of the
correlated parameters is kept in the experimental dataset, e.g. only the average
wind speed is retained, while the values captured by each of the two nacelle
anemometers are removed.

Removing Noise Considering that we are dealing with a real-world dataset, it
is expected that the data will contain a substantial amount of noise, e.g. outliers,
extreme values, etc., which will impact negatively the outcome of the mining
if they are not removed. Several different filters based on the most important
output parameter active power are applied in order to remove points with an
unlikely active power based on their input parameters, by considering each wind
turbine separately.

In Figure 2 one can see the effect of this cleaning approach on the power
curve based on data from one of the wind turbines in the fleet.

Standardisation The different parameters monitored have values with very
different ranges (e.g. the generator bearing temperature varies between -5 and
80 degrees of Celsius, while the generator speed has values between 0 and 1800
rpm), and are of different nature (angular versus non-angular). This makes it
very difficult to compare and estimate similarity between parameter values (fea-
ture vectors) in time since most of the distance metrics will not perform well.

4 Supervisory control and data acquisition (SCADA) is an architecture to control
industrial systems by use of both external and internal sensors (sources).

https://github.com/dataInnovationScientist/LIAMVARWD
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(a) Original (raw) data (b) Cleaned data

Fig. 2. Power curve of the remained and cleaned points in one of the wind turbines.

Therefore, angular parameters are transformed into two non-angular values by
there sine and cosine value. In the case of the wind direction parameter, we
multiply the sine and cosine values with their wind direction. By doing this the
information of both wind speed and wind direction are captured into the two
new variables. Additionally, min-max normalisation [9] is applied on the param-
eters across the time window selected for analysis, per wind turbine. In this way,
all parameter values are scaled relatively within the same turbine between 0 and
1, which is resulting in much more homogeneous feature vectors per timestamp.

5.2 Implementation and Availability

The proposed Layered Multi-view Analysis methodology has been implemented
in Python version 3.6. In our experiments we have used four different cluster
validation measures: Silhouette Index, Calinski-Harabasz Index, Davies-Bouldin
Index and Connectivity. The first three indices and k-means clustering are used
from the Python library Scikit-learn. Connectivity Index, min-max normaliza-
tion and hypercube binning algorithm have been implemented in Python ac-
cording to their original descriptions (see Section 5.1). Methods from Python
Matplotlib and Seaborn libraries are used for visualisation. We have also used
the implementation of KDE and Silverman rule provided by Python SciPy. Fi-
nally, Python Pandas library is used for its DataFrame implementation and
NumPy library for a couple of mathematical manipulations.

The executable of the Layered Multi-view Analysis algorithm and the ex-
perimental results are available on GitHub5. The datasets can be found in the
website of Engie6.

6 Results and Discussion

The original public SCADA data of a fleet of 4 turbines have been downloaded
and pre-processed individually per turbine applying the different steps described

5 https://github.com/dataInnovationScientist/LIAMVARWD
6 https://opendata-renewables.engie.com/explore/

http://scikit-learn.org/stable/
https://github.com/dataInnovationScientist/LIAMVARWD
https://opendata-renewables.engie.com/explore/
https://github.com/dataInnovationScientist/LIAMVARWD
https://opendata-renewables.engie.com/explore/
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Fig. 3. Torque curves of the operating modes for one of the wind turbines.

in Section 5.1. The binning method used for the removal of outliers utilised
bin widths of 0.33 m/s for wind speed and 9 degrees for wind direction. The
extreme active power filter was set in such a way that all points with active
power more than 500 kW higher than the expected, or more than 1250 kW
lower than expected have been removed. A smaller upper threshold is used since
the expected active power is quite close to the theoretical maximum which a
wind turbine can produce, so there is a certainty that those points are noise.

In summary, our pre-processed experimental dataset is covering a period of
about 8 years and is split in 4 different datasets, one per turbine in the fleet.
In this section we represent and discuss the results obtained by applying the
proposed multi-view data analysis approach as outlined in Section 4.5.

6.1 Individual Analysis Layer: Operating Mode Characterisation

This layer is concerned with the internal working of wind turbine. The following
selection of 12 endogeneous parameters, which are the ones retained after elimi-
nating correlated parameters (Section 5.1), are considered: sine and cosine of the
pitch angel, generator speed, generator bearing temperature 1 and 2, generator
stator temperature, gearbox bearing 1 and 2 temperature, gearbox inlet temper-
ature, gearbox oil sump temperature, rotor bearing temperature and torque.

In what follows, we will refer to the 12 parameters as p1, p2, . . ., p12 following
the order in which they are listed. Subsequently, the k-means clustering algo-
rithm has been applied on the 4 datasets, one per turbine, composed of the 12
parameters. The optimal amount of clusters (k) per turbine was determined by
applying a majority voting (Section 4.1), resulting in k = 3 for two of the tur-
bines and k = 4 for the other two. The difference between the obtained clusters
is illustrated in terms of the behaviour of the torque curve (torque as a function
of the generator speed), as depicted for one of the four turbines in Figure 3.
The torque curve being derived from an endogeneous parameter is better suited
to illustrate difference in operational behaviour rather than the most frequently
used power curve.

In total, 14 clusters (operating modes) have been derived. The assumption
is that each cluster is representing a distinctive operating mode of the turbine.
Each operating mode is characterised in terms of the allowable ranges of each of
the 12 internal parameters. Those can be consulted on our GitHub repository.

https://github.com/dataInnovationScientist/LIAMVARWD
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(a) Hypercubes (b) Data points

Fig. 4. Percentage of retained data per cluster after removal of sparse hypercubes.

Fig. 5. Performance profiles per operating mode for wind turbine 2.

6.2 Mediation Layer: Performance Profiling

In this layer, performance profiles are derived for each operating mode follow-
ing the steps outlined in Section 4.5. The corresponding values for tempera-
ture, wind speed and wind direction (after their non-angular transformation
as stated in Section 5.1) per cluster are binned together using the hypercube
approach (see Section 4.3) and the corresponding active power values per hyper-
cube are used to compute a KDE using Gaussian kernel with Silverman’s rule
(see KDE Section 4.2).

Although it was expected that the KDE computation might be influenced
by the number of points in each hypercube, or indirectly by the binning gran-
ularity, experiments with different sizes of the hypercubes demonstrated very
robust KDE computation w.r.t. varying bin sizes. The results presented in the
study have been obtained by splitting the solution space into 2250 equal size
hypercubes, where each operating mode has around 500 hypercubes containing
data points. Subsequently, sparse hypercubes (with less than 10 points) have
been removed for the sake of statistical representativeness. The latter did not
lead to substantial information loss since as it can be witnessed in Figure 4, the
retained around 5% of the hypercubes for each cluster contain more than 97%
of the original data points.

Subsequently, the mixture probability distribution for each cluster (operating
mode) is derived as outlined in Section 4.5. Figure 5 depicts for one of the tur-
bines the individual probability distributions derived for the different hypercubes
and the corresponding mixture probability distributions per cluster.
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Fig. 6. Fleet-wide performance profiles and their corresponding individual components.

6.3 Integration Layer: Fleet-wide Performance Labelling

In this layer, the obtained performance profiles (mixture distributions) per in-
dividual operating mode have been pooled together and subjected to k-means
clustering. The optimal number of clusters k = 3 has been derived as previously
described by applying a majority voting (Section 4.1). Subsequently, 3 fleet-wide
performance profiles (higher level mixture distributions) have been computed for
the three clusters by combining the corresponding performance profiles (mix-
ture distributions). The mixture weights have been computed as the number of
points in the corresponding cluster from layer 1, normalised by the total number
of points in the given fleet-wide cluster. The resulting very distinctive fleet-wide
performance profiles (A, B and C) are depicted in Figure 6.

Note that each of the fleet-wide performance profiles can be traced back
to a subset of individual operating modes (by use of the table constructed in
Section 6.1 and available for consultation on our GitHub repository), resulting
in fleet-wide (composite) operating modes, which we also denote with A, B and
C: A = {1, 3, 5, 6, 8, 9, 12, 13}; B = {2, 4, 10, 14}; C = {7, 11}. It is interesting
to observe that the composite operating mode linked to profile C can be traced
back to only two of the four wind turbines.

The derived fleet-wide (composite) operating modes, each associated with
a very distinctive performance profile (see Figure 6), can now be used to label
the fleet data as follows: 1) for each timestamp, consider the values of the 12
operational parameters; 2) determine to which operating mode they can be as-
signed (based on the table constructed in Section 6.1); 3) identify the composite
operating mode to which the identified mode belongs; 4) subsequently, assign
the corresponding letter A, B, C or D (not seen) to the timestamp. In this way,
each dataset per turbine can be converted into A, B, C or D code (as a DNA se-
quence), which can be very insightful for monitoring purposes (e.g. long periods
of B would signify optimal performance), but is also a powerful representation
enabling more advanced applications, e.g.: mining the fleet data for interesting
patterns such as transitions between operating modes; zooming in periods with
too many Ds; training a predictor of expected production on historical data to
be used to detect deviations during real-time operations.

https://github.com/dataInnovationScientist/LIAMVARWD
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7 Conclusion and Future Work

We have proposed a novel data analysis approach that can be used for multi-
view analysis and integration of heterogeneous real-world datasets originating
from multiple sources. The validity and the potential of the proposed approach
has been demonstrated on a real-world dataset of a fleet of wind turbines. The
obtained results are very encouraging. The method is very efficient and robust in
detecting characteristic operating modes across the fleet. Subsequently, distinc-
tive performance profiles are derived and associated with each operating mode,
which enable converting the fleet data into powerful letter code suitable for more
advanced mining.

For future work, we are interested to extend our research in the following
directions: 1) fine-tune the method by using e.g. an adaptive hypercube binning;
2) testing different experimental scenarios e.g. comparing different time periods
from the same wind turbine; 3) consider additional validation use cases dealing
with multi-source datasets e.g. mobility or manufacturing data; 4) extend further
the method by exploiting the possibility to covert the fleet data into letter code.
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