
Multivariate time series unsupervised
representation on a causality graph for the health

monitoring of mechanical systems

Edouard Pineau†‡?, Sébastien Razakarivony†, Thomas Bonald‡

Safran Tech, Signal and Information Technologies†

Telecom Paris, Institut Polytechnique de Paris‡

Abstract. Multivariate time series (MTS) have specific features that
complicate their analysis: interactions in space and time between the
MTS components, variable length, absence of trivial alignment between
samples, and high dimensionality. Hence, finding a representation of MTS
from which we can extract meaningful information is a challenging task.
In general, specific assumptions are needed to obtain a valuable repre-
sentation. In our paper, we assume that a dataset of MTS samples has an
underlying causal structure that we can exploit to represent samples. Our
contribution is a new representation framework that consists of first find-
ing the overall causality graph in a studied dataset and then representing
the samples on this graph with a relational neural network. We name
this method Sequence-to-Graph (Seq2Graph). We apply Seq2Graph on
a health monitoring task, on two MTS datasets coming from mechanical
systems, to show the interest of the causality-based representations.

1 Introduction

Nowadays, more and more data is packaged as multivariate time series (MTS),
for example industrial records, physiological data, and vehicles sensors to name a
few. An important preliminary step for data information mining or other down-
stream machine learning tasks involves finding consistent and meaningful repre-
sentation of samples. In this paper, we tackle an unsupervised MTS representa-
tion problem using a particular feature of MTS: the causality between variables.

The standard definition of causality used for time series data is the Granger
causality [11]. It consists in evaluating, for each couple of variables (X(i), X(j)) of
a MTS sample X, if the variable X(i) (the cause) is useful to forecast the variable
X(j) (the consequence). Hence, Granger causality is a feature that describes the
causal dependencies underlying data. Causality can be represented as a graph
G, as in Figure 1.
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Fig. 1: Graphical representa-
tion of the causality underly-
ing a bivariate time series X.
The edges are weighted with
a set of edge’s weights WX

that depends on X. In this
paper, we claim that compar-
ing MTS samples by compar-
ing their causality weights is
relevant.

When observed samples are generated from
a unique mechanical system S, it is common to
assume a unique causality structure G for the
whole dataset X . For example, G can be the
skeleton of an articulated body or represent the
causal relationships (statistical or physical) be-
tween sensors arranged in an engine, from which
we observe samples. An illustration is given in
Figure 2. The causal structure G is then shared
between all observed samples. When the as-
sumption of a unique graphical structure for all
samples is valid, like in the aforementioned ex-
amples, a causality graph G can be extracted
directly from the studied dataset X , using an
appropriate statistical method. G is then an ab-
stract representation of the system S (e.g. a me-
chanical system) that generated all the observed
samples.

Yet, Granger causality inference only aims at
discovering and interpreting causalities between
observed variables at the scale of the dataset (i.e. one graph for all samples).
In this paper, we propose to relegate the inference of the causal graph G as
a preliminary task preceding the representation inference of individual MTS
samples. Our assumption is the following: since G is the graphical model of the
system S that generated all the observed samples (e.g. a mechanical system), G
is also a natural meaningful latent structure on which each data sample can be
represented. In particular, each sample X can have its own set of edge’s weights
WX on G, hence its own causality-based representation. We can then compare
samples by comparing their causality graph edge’s weights. We claim and show
in this paper that such a representation is meaningful for mechanical system’s
state monitoring.

We divide the problem into two subproblems. First, the extraction of the
causal structure G using sparse MTS modeling approach [29]. Second, the choice
and training of a relational neural network Fφ parametrized by φ that takes MTS
samples as input and maps them onto G [23] to obtain a causality-based rep-
resentation. Our main contribution is an unsupervised multivariate time series
representation framework based on Granger causality, its implementation with
neural networks and its application to health monitoring. We name it Sequence-
to-Graph (Seq2Graph). Section 2 introduces the problem. Section 3 details the
learning procedure. Section 4 gives related work. Section 5 illustrates the inter-
est of Seq2Graph framework with two experiments of unsupervised mechanical
systems health monitoring.



Fig. 2: Under the assumption that a unique causal graph G represents the causal
structure underlying a mechanical system (here a plane), we claim that, if the
causality assumption is relevant, the respective set of edge’s weights WX , WY

and WZ associated to the MTS samples X, Y and Z can characterize the state
of the system. Here, following the color code, WZ should be closer from WX

than from WY . We note that a maintenance was effectuated between Y and Z
to restore the system’s state.

2 Seq2Graph

Let X ⊆ Rd×T be a finite set of d-dimensional multivariate time series (MTS),
each indexed over the discrete time range t = 1, . . . , T . We want to represent
each sample X ∈ X on a causality graph G.

2.1 Problem formulation in linear setting

We first assume that for each time series X, there exists a tensorWX ∈ RK×d×d
such that

Xt =

K∑
k=1

WX
k Xt−k (1)

Model (1) is aK order linear vector autoregressive model (L-VAR), with sample-
wise parameterWX . We consider thatWX represents time series X under linear
assumption (1). We therefore can compare different samples X by comparing
their parameter WX .

Each parameter WX can be estimated by maximum likelihood (MLE), in
closed form or with a generic likelihood term (for example using a Kalman filter
[3]). Yet, when the dataset X is large, when the samples X are high-dimensional
or whenWX has consistency or sparsity constraints, estimating every individual
WX by MLE can be expensive or untractable. As a tractable alternative, we use
[23]: a relational neural network (RelNN) [15] Fφ with parameters φ is trained to
transform time series samples X directly into parameterWX , i.e. Fφ(X) = WX .
Hence, the representation problem becomes an encoder-decoder representation
learning scheme, with Fφ the encoder and the VAR model (1) the decoder.



2.2 Representation on a common causality graph G

In VAR model, WX
.,i,j = 0 means the absence of causality from variable X(i)

to variable X(j), for a given sample X, [6]. In order to have all samples X
represented on the same causality graph G, all WX should share the same zeros.

In consequence, we assume that each tensor WX has three underlying com-
ponents: a dataset-level component W̄ ∈ RK×d×d, a sample-level component PX
and dataset-level binary adjacency A ∈ {0, 1}d×d, such that:

WX = Ā�
(
W̄ + PX

)
(2)

.
where � is the Hadamard product and Ā the adjacency A extended to match the
dimensionality of W̄ . W̄ and A are shared between all samples X. The entries of
the sparse tensor A�W̄ are the edge features of the causal graph G. The entries
of the tensor A�WX are the adjustment of the graph to match the properties
of sample X.

Remark 1. The decomposition of a regression problem into sample-level WX

and dataset-level W̄ is known as random coefficient regression (RCR) [19]. The
particularity of our approach is the shared sparsity given by A.

In practice, we first infer a sparse tensor W̄ . Then we define a graph ad-
jacency A from W̄ : Ai,j = 1{

∑K
k=1 |W̄k,i,j | > 0}. We then build and train a

neural network Pφ with parameters φ that directly and efficiently outputs the
adjustment PX in the RCR. Hence, the previously introduced neural network
Fφ is defined as Fφ(X) := W̄ +PGφ (X), where PGφ (X) = Ā�Pφ(X). The details
of the learning procedure and the implementation are given in Section 3.

The Seq2Graph framework is illustrated in Figure 3.

2.3 Generalized L-VAR

To obtain a richer representation learning framework, we extend linear ap-
proach to a generalized linear [20] vector autoregressive model (GL-VAR) [29].
We remind that generalized linear models extend linear regression by relating
the linear transform and the response variable with a nonlinear link function.
Hence, let g = {gθj}dj=1 be a set of shallow neural networks with parameters
θ = {θj}dj=1, gθj : Rl → R, such that for each sample X ∈ X we can find a
tensor WX ∈ RK×d×d×l such that ∀j ∈ J1, dK:

X
(j)
t = gθj

(
K∑
k=1

WX
k,.,jXt−k

)
(3)

with l ∈ N∗. (3) is a neural generalized linear version of a vector autoregressive
(VAR) model, called generalized-linear VAR (GL-VAR) [29].



Fig. 3: Seq2Graph. 1© is the dataset-level causal graph G inference. X̂ is the set
of predictions for the whole dataset X . G is built such that it explains the mean
dynamical behavior of the dataset. 2© is the representation inference. X̂ is the
prediction of the sample X. The adjustments PGφ (X) are built such that they
explain the specific dynamical behavior of sample X, along the edge of the mean
causal graph. Here, K = 2.

3 Seq2Graph training

3.1 Finding G with group-lasso training

We search a sparse W̄ from RCR model (2) and θ = {θj}dj=1 the set of parame-
ters of the neural link functions (in the nonlinear case (3)). We therefore search
a solution to the following mean-squared regression with group-lasso regulariza-
tion:

min
W̄ ,θ

EX∼X

 d∑
j=1

T∑
t=K+1

∥∥∥∥∥X(j)
t − gθj

(
K∑
k=1

W̄k,.,jXt−k

)∥∥∥∥∥
2

2


+ λ

d∑
i,j=1

∥∥W̄.,i,j

∥∥
F

+ γ

d∑
j=1

‖θj‖ (4)

where ‖.‖F is the Frobenius norm. The group-lasso penalty for W associated
with coefficient λ encourages each ‖W̄.,i,j‖F to be null, meaning that all causal
links from X(i) to X(j) would be cut. λ ∈ R+ controls the speed and intensity
of the pruning. Regularization ‖θj‖ compensates the effect of the group-lasso to



avoid the (theoretical) situation where W̄ goes to zero while parameters θ tend
to infinite sensitivity.

Problem (4) is first optimized with stochastic gradient descent. Then, we
chose proximal gradient descent (PGD) [21] as fine-tuning optimization proce-
dure in order to achieve true zeros in W̄ as in [29]. If we had a target sparsity,
we could stop the PGD when the level is achieved. In our experiment, we do
not have (or assume to not have) the true sparsity level. We propose to mon-
itor the impact of the sparsity on prediction and chose the maximal sparsity
that does not degrade the prediction capacity of the model. See experiments for
illustration.

We estimate causality adjacency A with Ai,j = 1{
∑K
k=1 ‖W̄k,i,j‖ > 0}.

3.2 Causality adjustment learning

In this section, we train a neural network that directly infers the causality ad-
justment of RCR model for a given sample.

We assume that the parameters {g, W̄} has been learned on the whole dataset
(see Section 3.1). We now build and train a relational neural network Pφ to infer
each sample-wise adjustment. We note PGφ = Ā�Pφ the adjustment constrained
to live only on the edges of the inferred causality graph G. Ā ∈ RK×d×d×l is the
adjacency matrix A of G expanded to match the dimensions of tensor PGφ . Then
the problem to solve is:

minφ EX∼X

[∑d
j=1

∑T
t=K+1

∥∥∥∥X(j)
t − gθj

(∑K
k=1

(
W̄ + PGφ (X)

)
k,.,j

Xt−k

)∥∥∥∥2

2

+ ηΩ
(
PGφ (X)

)]
(5)

Such learned inference network is therefore both meaningful (since built to rep-
resent the dynamics underlying the data) and sparse (since constrained on G).

η is a parameter controlling the intensity of the penalty function Ω. A stan-
dard penalization Ω would be the l2 norm on the parameters φ, under the
assumption that the parameters of PG(X) are normally distributed around
0. A more general penalty (yet equivalent when minimized), that we use for
Seq2Graph training is Ω(PG(X), P reg) = ‖PG(X) − P reg‖2 + ‖P reg‖2. P reg
is a parameter trained during the optimization (5). We have found that such
penalty helps to obtain more consistent representation. In both cases, the regu-
larization term Ω

(
PGφ (X)

)
tends to bring the individual representations closer.

The idea is to avoid overfitting while improving the consistency between the
representations (closer representation for close MTS underlying state). Another
interesting regularization would have been to take into account explicitly the
temporal relations between samples by forcing the consecutive samples to be
closer. Yet, we wanted to show that the causality inductive bias can be sufficient
to find temporal consistency when it is relevant, like in certain health monitoring
problems.



3.3 Implementation details

Neural network representation inference For the representation inference func-
tion PGφ , we use a relational neural network (RelNN) [24]. The RelNN embeds
pair of variables. Its adaptation for time series data is taken from [15], where
the RelNN takes a MTS as input and embeds all pairs of variables into a binary
space. In [23], an equivalent RelNN embeds pairs of variables as vectors special-
ized for linear causality, where it proved to be expressive, noise resistant and
able to generalize over the notion of linear causality.

Multi-multivariate time series There are cases where the d components of a
MTS are multidimensional. For example, if the MTS has d variables situated in
a 2D space (see Experiment 5.1), hence each variable is represented by a 2D time
series. More formally, the problem extends from X ⊆ Rd×T to X ⊆ Rd×m×T , i.e.
∀X ∈ X Xt ∈ Rd×m, with m the dimension of individual time series variables.
The approach presented in our paper adapts to this general case by replacing
WX ∈ RK×l×d by WX ∈ RK×l×d×1. The additional dimension in WX enables
to consider the m time series of each variable as a whole.

4 Related work

This section outlines main related work for the two key concepts of our paper:
MTS representation and causality inference.

Time series representation. Finding interesting and relevant features from time
series data has a long-range history. A particularity of time series is that they
have no explicit and general features [32]. Hence, MTS representation in an unsu-
pervised manner requires strong assumptions to be relevant. The most common
assumption is that similar samples have similar shapes and patterns up to a
warping alignment [7] and can be represented closely using bag-of-patterns [26].
This simple assumption gives good results for many time series tasks as long as
it is valid, and can be efficiently used [31]. Yet, for multivariate time series, it
is limited since it generally does not take into account the interactions between
variables.

More recently, the usage representation learning methods based on neural
networks have emerged, giving new representation learning models for MTS
data. In [17], they propose a method such that the distance between the learned
representations is the dynamic time warping (DTW) distance. A powerful family
of neural representation learning methods is the autoencoders (AE) and related
methods [2]. The principle is to train an encoder and a decoder simultaneously,
such that the encoded signal of each sample can be correctly decoded. If so,
it means that the encoded signal contains the essential information. The Se-
quential Autoencoders (SAE) [4,18,34] is the most popular adaptation of AE
for time series data. A richer SAE proposed in [8] is based on the joint learning
of a discrete variational autoencoder (VAE) [30], a self-organizing map (SOM)
latent space [16] and a Markov transition model [10]. Yet, the latter model only



treats discrete representation of time series. In [9], an unsupervised scalable time
series representation (USTR) is proposed using the notion of triplet loss. The
assumption is that a MTS sample is closer to one of its subsamples (positive
sampling) than to a randomly chosen sample of the dataset (negative sampling).
This model achieves very good results in classification downstream task. More-
over, it can handle many types of data since the assumptions underlying the
model are weak.

Closer to our work, [15] proposes the neural relational inference (NRI), a
VAE that transforms time series into a binary relational graph, trained as a
variable selection method for neural time series model. Despite high interest and
impressive results, NRI is limited to binary representations. [23] extends the
binary relationships of NRI to a linear Granger causality latent space, with a
model called Seq2VAR. Their model is applied to causality detection in contexts
where NRI fails (noisy environment, floating intensity of the causalities). Our
approach is built upon Seq2VAR, by adding non-linear causality and dataset-
level regularization.

In the current paper, we use SAE, USTR and Seq2VAR as comparative
models.

Causality in time series. It is common to represent data with graphs [27]. In our
paper, we use a particular graph specific to MTS: the Granger causality (GC)
graph [6].

Initially, GC is defined with the non zero entries of the parameter of a sparse
linear vector autoregressive (L-VAR) model [5,12], obtained with a penalization
on L-VAR parameters during training.

For the nonlinear case, finding a useful latent representation is far from ob-
vious. Among standard approaches for nonlinear GC detection in time series,
we find kernel methods [1] or information-theory [28,13]. These methods find
the existence of causality between variables, i.e., the causality graph. Yet, these
methods do not give information on the importance of the causality where it
exists. In Seq2Graph, as shown in the following, we require continuous (real)
features on the edges of the causality graph. In [33], the authors extend VAR
to nonlinear causality with the linear combination of B-spline basis functions.
The linear operator, once fitted with appropriate penalization, contains con-
tinuous causal information. Another nonlinear extension of L-VAR causality is
presented in [29]. The authors build the nonlinearity with neural networks. They
find causality by applying a penalization on the input convolutional kernel. We
use this last work for our causality-based dataset-level regularization.

5 Experiments

We propose two experiments to illustrate the interest of Seq2Graph. Both are
based on multivariate time series data generated from mechanical systems. For
the first, we use synthetic data with controlled causal structure to show the
interest of the regularization with global causality graph G with a sparse random



coefficient model (2). For the second, we use a NASA dataset to assess Seq2Graph
on real representation task. In all experiments, we compare Seq2Graph to three
time series representation methods: a sequential autoencoder (SAE) [18], to the
unsupervised scalable time series representation (USTR) [9] and to the sequence-
to-VAR (Seq2VAR) [23].

For all experiments, we use PyTorch [22]. All models are trained with Adam
optimizer [14] with learning rate 5.10−4. For the sample-level representation
training, we added a learning rate scheduler with step size 100 and a decay
factor = 0.9. All experiments are done on a GPU Nvidia Quadro K4000. The
hyperparameters are given in Table 1.

λ γ η

Experiment 5.1 10−3 - 10−5

Experiment 5.2 5× 10−3 5× 10−3 5× 10−4

Table 1: Hyperparameters for our experiments.

Code to reproduce the experiments can be found at https://github.com/ano
nym-conf-submission/Seq2Graph.

5.1 Interacting Newtonian system

Dataset We simulate samples from a 10-ball-springs system, consisting of the
simultaneous trajectories of 10 identical balls of unit mass in a 2-dimensional
space, each ball being connected to some others by springs (the rate of connection
is 56%). This system has a natural bidirectional causal structure: each ball’s
trajectory acts as a cause for changes in the trajectory of the neighbor balls,
and conversely. Using the previously introduced notations, we have d = 10 (10
balls) and m = 2 (in a 2-dimensional space, see implementation details). System
dynamics follows Newton’s law of motion. We assume that the system is ageing
and is regularly restored. All samples share a common graph graphical structure
G whose adjacency is the interaction matrix formed by the springs.

We simulate a synthetic dataset of 15000 samples (trajectories), 5000 for
train, 5000 for validation and 5000 for test. Each trajectory is 49 time-steps-long
(T = 49). For each batch b of 50 samples, a constant ageing factor αb ∼ U([0.9, 1])
is applied to the system: at each sample X whose index is s ∈ J0, 50K (within
the batch b of 50 samples), we randomly choose a spring (i, j) and multiply its
rigidity by αsb, i.e. an exponential ageing coefficient with respect to sample index.
Every 50 samples, we restore the state of the system and another ageing factor
is sampled and applied to the next batch of 50 samples. For some trajectories,
αb = 1, i.e. there is no ageing: the initial hidden causality graph has binary
adjacency and remains the same along the life of the system. When αb < 1, the
initial graph is deteriorating during along the life (observed through 50 samples)
of the system, until restoration.

https://github.com/anonym-conf-submission/Seq2Graph
https://github.com/anonym-conf-submission/Seq2Graph


Fig. 4: Top: Prediction MSE. Black line is the true sparsity. Bottom: Causal
graphs for different sparsity levels. The third figure is the inferred causal graph,
which matches the ground truth.

Model For this first experiment, we assume that the model is linear, i.e. that
functions gθj are identities. The objective is to illustrate the impact of repre-
senting data on the same causality graph G. We determine by cross-validation
that K = 2. The level of sparsity is determined by the quality of the prediction
for different levels of sparsity of the causality graph, as shown in Figure 4. The
prediction is almost invariant until a sparsity of about 56%. We note that we
find back the true adjacency with (4).

Metrics and results We assess the quality of the representation inference function
PGφ . We test if we can represent the ageing of the system with respect to a
reference healthy sample Xref (first sample of a batch) picked in the validation
set. We then build the test ageing curve ‖

∑K
k=1(PGφ (Xref )− PGφ (X))k‖22 for all

samples X ∈ X test. Results are presented in Figure 5 and Table 2.

Fig. 5: Unsupervised estimation of ageing curves for the 10 first batches of the
test set. Top-left: USTR [9], top-right: SAE [18], bottom-left: Seq2VAR [23],
bottom-right: Seq2Graph. Orange curve is the ground truth.



Models MSE Ageing score*
SAE 2.2× 10−5 0.09
USTR - 0.05
Seq2VAR 2.3× 10−7 0.62
Seq2Graph 4.4× 10−7 0.97

Table 2: Performance of several models plus ours on ageing ball-springs problem.
The Ageing score is the correlation between estimated and real ageing curve.
*Higher is better. MSE stands for mean squared error and serves only as a
sanity check (for MSE-based methods).

We see that Seq2Graph outperforms both SAE, USTR and Seq2VAR for
unsupervised representation learning, when meaningful information is fully con-
tained in the causality. In particular, SAE and USTR completely miss the consis-
tent ageing information, as expected from pattern-based approaches. Although
consistent, Seq2VAR seems to suffer when the causalities become lower. In fact,
lowering the causality improves the difficulty to capture them, hence prevents
to find the trend hidden in causality. Adding a common causal structure W̄ in
Seq2Graph naturally helps the identification and the consistency of the sample
representations.

5.2 NASA turbofan degradation simulation dataset

Dataset NASA public Commercial Modular Aero-Propulsion System Simulation
dataset (C-MAPSS) is a tool for simulation of realistic large commercial turbo-
fan engine data [25]. An engine degradation simulation was carried out using
C-MAPSS, under different conditions and different faults. We use the FD001
dataset which contains 100 time series recorded at sea level with one fault mode
for each (degradation of the high-pressure compressor, a fundamental turbofan
piece). The time series are the output of the turbine-engine system that takes
a fuel flow as input and outputs 21 variables, whose 13 are not constant (we
only keep these 13 variables). Time series are 206 time-steps long on average.
Each time series is the recording of a turbine engine going to failure. The engine
is operating normally at the start of each time series and develops a fault of
unknown initial magnitude in its first moments. We only know that the impact
of this fault on the system grows in magnitude until system failure.

For the results of the paper, we split the dataset: the first 60 time series are
train set, the 15 next are validation set and the last 25 are test set. We extract
from these time series sub-trajectories of length 25, with a rolling window with
stride 5 to make our dataset. Hence, as for previous experiment, we have several
batches of samples. A batch corresponds to the life of the system from start to
failure. At the end of each batch, the engine is restored and another batch of
samples is recorded.



Model Using the previously introduced notations, d = 13. All samples share a
common (unknown) structure which is the turbine engine mechanics. We assume
that this structure can be represented by a sparse causality matrix. For this
experiment each link function gθj is a MLP with 2 hidden layers of 4 channels. We
determine by cross-validation that K = 2. The maximal sparsity is determined
by the quality of the prediction for different levels of sparsity, as shown in Figure
6. The prediction is almost invariant until a sparsity of about 75%.

Fig. 6: Top: MSE of the prediction. Black line is the sparsity of the inferred
causal graph. Bottom: Causal graphs for different sparsity levels. Fourth image
is the inferred causal graph.

We solve (5) using the previously found causal graph. Contrary to the pre-
vious experiment, the system is not isolated since the observed variables are
the response to an unobserved command (the fuel flow). Yet, the variables can
effectively interact with each other and statistical causality still makes sense as
a representation assumption.

Metrics We assess the quality of the learned PGφ by testing if we can extract
ageing information from the representations, as for the previous experiment.
Yet, we remind that we do not know the importance of the initial fault. What
we know is that the 100 engines go to failure and the degradation of the state
is monotonic until restoration. We propose a two-step process to predict the
imminence of a failure.

First, we build an ageing indicator assuming that is a relative position com-
pare to a healthy sample. We pick a healthy sampleXref (first sample of a batch)
in the validation set and build the ageing curve ‖

∑K
k=1(PGφ (Xref )−PGφ (X))k‖22

for all X ∈ X valid. We compute a failure threshold τvalid that must indicate
when an engine goes to failure. We set τvalid to the maximal threshold that en-
sures turbine engine failure detection built from ageing curves for all validation
batches, that is formally defined as:



τvalid = min
X∈Xval,fail

∥∥∥∥∥
K∑
k=1

(PGφ (Xref )− PGφ (X))k

∥∥∥∥∥
2

2

(6)

where X val,fail is the set of validation samples preceding the engine failure. We
note that τvalid has no safety margin, i.e. any threshold above τvalid misses
at least one engine failure in the validation set (under monotony assumption
underlying the ageing of a mechanical system). It is possible to add a margin by
lowering τvalid.

Second, we build the test ageing curve ‖
∑K
k=1(PGφ (Xref ) − PGφ (X))k‖22 for

all X ∈ X test. We apply the detection test using τvalid (represented by the
horizontal dotted line in Figure 7.

Fig. 7: Unsupervised estimation of C-MAPSS ageing curve with different models
on the 7 first test batches. Top-left: USTR [9], top-right: SAE [18], bottom-
left: Seq2VAR [23], bottom-right: Seq2Graph. Orange picks are engine failures
and repair. Long red dotted horizontal line is the threshold τvalid. Black dashed
horizontal lines are the estimated initial states of each engine, computed as the
mean value of the curve on the 10 first samples of each batch.

Results As a first assessment, we see in Figure 7 that the estimated ageing
curves built from SAE, Seq2VAR and Seq2Graph are almost monotonic inside
each batch (between two vertical orange lines). We recall that monotony is the
only ground truth information we have on the ageing of the system. The fact that
SAE, Seq2VAR and Seq2Graph unveils monotonic signal means the ageing infor-
mation is present both in patterns and values (SAE) and in causality (Seq2VAR
and Seq2Graph). We do not find consistent representations with USTR. We also
observe that the batch’s ageing curves do not begin at the same value (dashed
horizontal lines in Figure 7), whatever the method. It is partly imputed to the
fact that the mechanical faults are located at the beginning of each batch and
that they vary in intensity. Hence, the inferred first samples of each batch do
not have to be equal.



Fig. 8: Early alarm on CMAPSS data using MTS representation models USTR,
SAE, Seq2VAR (see related work for details) and Seq2Graph. Means and stan-
dard deviations are built using all batch’s first samples as Xref and several
encoders trained with different seeds.

We now compare the ability of the different MTS representations to rele-
vantly detect failures. In Figure 8, we see the proportion of alarm at different
time steps before actual failure happens, built from the estimated ageing curves
illustrated in Figure 7. First, we note that all models detect almost 100% of
failures before it happens. Second, we want detection of the coming failures to
be reasonably early to avoid false alarms. If curves cross threshold too early,
the MTS representation is useless. Figure 8 shows that Seq2Graph is the most
consistent in early detection with no alarms far from failure, due to the consis-
tency of the extracted monotonic signal. On the contrary, SAE always finds early
failures. We note that Seq2Graph also has lower standard deviation, illustrating
the interest of the regularizing effect over Seq2VAR.

We have built a representation of the samples that both describes the system
dynamics and is consistent with the unknown ageing process since the distance
from reference is almost everywhere monotonic before failure, without supervi-
sion. We showed an illustration of how to apply our causality-based representa-
tion learnig framework.

6 Conclusion and future work

In this paper, we have presented a multivariate time series (MTS) representa-
tion framework under the assumption that Granger causality contains relevant
information about data. We have proposed a two-step approach, based on neural
networks. First, the global causal graph is found with a group Lasso penalized
neural autoregressive model. Second, a relational neural network is trained to
infer the representation of each sample, constrained by the causal structure.

In future work, we intend to include temporal knowledge in Seq2Graph, using
the temporal proximity between samples. We will also leverage the interpretabil-
ity of causality to detect the origin of a degradation in a mechanical system.
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