
Real-Time Outlier Detection in Time Series
Data of Water Sensors?

L. van de Wiel1,2[0000−0002−5884−4367], D. M. van Es2[0000−0002−7067−6394], and
A. J. Feelders1[0000−0003−4525−1949]

1 Department of Information and Computing Sciences, Utrecht University,
Princetonplein 5, 3584 CC Utrecht, The Netherlands

2 Ynformed, Stadsplateau 4, 3521 AZ Utrecht, The Netherlands

Abstract. Dutch water authorities are responsible for, among others,
the management of water levels in waterways. To perform their task
properly, it is important that data is of high quality. We compare sev-
eral univariate and multivariate methods for real time outlier detection
in time series data of water sensors from Dutch water authority ”Aa en
Maas”. Their performance is assessed by measuring how well they de-
tect simulated spike, jump and drift outliers. This approach allowed us
to uncover the outlier parameter values (i.e. drift or jump magnitude) at
which certain detection thresholds are reached. The experiments show
that the outliers are best detected by multivariate (as opposed to uni-
variate) models, and that a multi-layer perceptron quantile regression
(QR-MLP) model is best able to capture these multivariate relations.
In addition to simulated outliers, the QR-MLP model is able to detect
real outliers as well. Moreover, specific rules for each outlier category are
not needed. In sum, QR-MLP models are well-suited to detect outliers
without supervision.

Keywords: Outlier Detection · Time Series · Quantile Regression · Syn-
thetic Evaluation · Machine Learning.

1 Introduction

Data validation is an important issue for water authorities in the Netherlands.
These regional government bodies are responsible for, among others, sewage
treatment, dyke management and the management of water levels in waterways.
It has been shown that validation pipelines along with implementation advice
result in more reliable policy advice, improved operational management and en-
hanced assessment of current management practices[18]. We examine water data
from Waterschap Aa en Maas, one of the 21 water authorities in the Netherlands.

To improve data quality, we try to separate outliers from ’real’ data points.
Our focus is on real-time outlier detection in time series of water sensor mea-
surements. The sensor data consists of time series with fixed intervals between
measurements. Different sensors can output time series that are correlated with

? Made possible by Ynformed and Waterschap Aa en Maas



2 L. van de Wiel et al.

each other. Here, we can use time series from one or multiple sensors to predict
other sensor values. If a big difference between the predicted and observed value
occurs, the value may be classified as an outlier[1]. It is important that outliers
are detected in real-time, as it enables taking immediate action to resolve possi-
ble issues, such as misbehaving sensors or a change in the sensor environment.

Our research focuses on finding which methods can be applied to detect
outliers in an unlabelled, unvalidated data set of multivariate time series in a
real-time setting. The data is unvalidated; it is raw sensor data that has not
gone through any processing steps to improve quality. The data is generally also
unlabelled, which means that domain experts have not indicated whether outliers
occur. An exception to this is in a few time series that we used for analysis.

We compare different regression-based methods, that predict sensor values
given (1) only the sensors history (’univariate’), or (2) given only measurements
of other sensors (’multivariate’). Outliers are then determined when the observed
data deviates too much from the predicted value. The univariate approach is
simpler and can be implemented more easily in practice. Yet, this method runs
the risk of carrying past outliers (such as drift) into the future. This would then
correctly predict outlying sensor behaviour, thereby failing to label it as outlying.
We expect the multivariate approach to solve this problem, as it is not informed
about the potentially outlying target history.

2 Data Overview

The data from Aa en Maas comprises water height data in weirs, with a mea-
surement frequency of 15 minutes. At these weirs, we have access to water height
on the upper part and the lower part of the weir, and also to water flow rate and
weir shutter height. We used water heights on the upper part of the weirs for
the analysis. These time series (which are the exceptions described in Section 1)
were designated by domain experts as not containing any outliers. We gathered
all data between 05-06-2015 and 01-07-2019.

An example of water height data on the upper part of a specific set of weirs is
shown in Figure 13. We see that this data is not without errors. For example, the
”108HOL upper” time series (bottom line) has a strange swing around October
2018. Some other minor spikes can also be encountered in this same series. Fur-
thermore, missing values can occur, as seen near the end of the ”108IJZ upper”
time series. This data set has relatively few missing values (approximately 2500);
other sensor sets have more.

The data of Figure 1 is of relatively high quality. However, when looking at
other sensor sets, time series seem more noisy. In addition, other sensors had
more missing data. To evaluate outlier detection capabilities under varying data
quality conditions, we selected multiple sensors that had varying data qualities.
We chose four weirs for the analysis and model evaluation. These weirs are
102BFS, 103HOE, 104OYE and 201D. For each target time series, we used four
other time series as features in multivariate modelling, see Section 3.1.

3 This data is not used in our main experiments.



Real-Time Outlier Detection in Time Series Data of Water Sensors 3

Fig. 1. An example of available water height data. These six sensors are all on the same
body of water and are relatively close to each other (about 6km as biggest distance).

3 Experiment setup

3.1 Outlier detection pipeline

Sensor selection We first discarded all sensors that had more than 10% missing
values. Then, for each target sensor, from the hundreds of sensors we selected
four sensors that correlated most with the target and used those as predictors.
This ensures decent model performance while reducing the danger of overfitting.

Imputation The data set contained missing values, which can be the result of
sensor network issues or sensor malfunctioning, for example. We imputed rather
than discarded these values to ensure evenly spaced time series. To determine
the best suited imputation method for our problem, we benchmarked various
methods. For this, we simulated gaps (of similar duration distributions compared
to the actual missing gaps) in the time series and measured how well a MICE
procedure[17] with different estimators (extra trees, linear regression, Bayesian
ridge, KNN, random forests and MTSDI[8]) was able to reproduce the missing
values. This showed that the linear regression estimator worked best.

Feature engineering For most multivariate experiments, we used rolling lag,
min, max and mean features with time steps of 15 and 30 minutes and 1, 2, 4,
8 and 16 hours. In the univariate setting, only the mean values over a prolonged
period of time turned out to be useful. For most univariate models we used the
mean values of window sizes [64 hours, 128 hours, . . . , 1048 hours]. The used
features per model type are described in Table 1.

Feature scaling To stabilise and enhance model training, we scaled all features
to unit variance and zero mean.



4 L. van de Wiel et al.

Table 1. Features per model type. Models are described in Section 4. The five multi-
variate models are linear regression (LR), MLP, Perceptron (P), QRF and RNN. The
five univariate models are LR, MLP, P, AR and isolation forests (IF).

Algorithm LR MLP P QRF RNN LR MLP P AR IF

Uni-(U)/Multivariate(M) M M M M M U U U U U

Use feature engineering 3 3 3 3 7 3 3 3 7 3

Use raw lag values 7 7 7 7 3 7 7 7 3 7

Use target sensor itself 7 7 7 7 7 3 3 3 3 3

Use correlated sensors 3 3 3 3 3 7 7 7 7 7

Modelling and predicting (ab)normal behaviour The models used can be
divided into two categories. The first one is regression-based models, where a pre-
diction for a target variable is made (possibly accompanied by quantile values).
We can compare this against the actual value and then calculate residuals.

The other category is direct classification. This approach looks at data and
then directly determines whether it is an outlier or not.

Outlier classification Most of our regression-based models use quantile re-
gression. To perform outlier detection when using these models, we applied the
Western Electric rules[19]. We applied Rule 1 and a variation of Rule 2. Rule 1
indicates a single point that falls outside of the 3σ-limit as outlying. Rule 2 does
this if two out of three successive points fall beyond the 2σ-limit.

The original Rule 2 led to a high number of false positives. Our improved
approach was to look at predictions averaged over the span of a day, and check
whether this exceeds the averaged values of the 2nd quantile. Minor short-lived
errors now get smoothed out and we get a more accurate way of describing a
gradual change. This is described in Algorithm 1. The first three lines down-
sample the target time series and the upper and lower 2nd quantile (which were
outputted by the quantile regression model) from a frequency of 15 minutes to
daily data. The next line performs the detection: if the downsampled time se-
ries is above the upper limit, or below the lower limit, an outlier is classified.
Eventually, this data is upsampled to a frequency of 15 minutes and returned.

Algorithm 1 Drift detection by downsampling.

1: function Drift detection(yin, q2upper, q2lower)
2: ydaily ← downsample to day(yin)
3: q2upper ← downsample to day(q2upper)
4: q2lower ← downsample to day(q2lower)
5: outliers daily ← (ydaily > q2upper) ∪ (ydaily < q2lower)
6: return upsample to 15min(outliers daily) . Outliers per 15 minutes.

3.2 Synthetic evaluation

Correctly recognising outliers is crucial. Therefore, we decided to use the Fβ-
score with β=2 to evaluate performance.



Real-Time Outlier Detection in Time Series Data of Water Sensors 5

Experts of the water authority established that no outliers are present in the
test data of the four time series. This is beneficial for the synthetic evaluation, as
already present outliers might interfere with the ones we introduce. The synthetic
evaluation method entails that we altered the data to simulate outliers that might
happen in reality. Such a method has been applied before in the literature[14].

We studied common outlier definitions to get an idea for outlier categories in
water time series data [10][18]. We focused on three synthetic outlier categories
because they were regarded to be important by the domain experts:

– Jumps: A period of data which is increased or decreased by a constant value.
After the period has ended, the data values return back to the original range.

– Extreme values: Isolated data points which are increased or decreased by
a constant value.

– Linear drift: The occurrence of a series which has a gradual linear trend
upwards or downwards.

To perform synthetic evaluation for jumps and linear drift, we created mul-
tiple test series with different outliers in it. We used one specific drift or jump
and then moved this outlier throughout the data, with each movement yielding
a new series. We alternated between outliers oriented upwards and downwards.
For each test case, we created 100 of these series. We used multiple outlier gener-
ation values (in meters), which were 0.02, 0.05, 0.1, 0.2 and 0.3. Jumps had the
duration of approximately 1.5 months, whereas drifts lasted for approximately
6 months. Examples are shown in Figure 2.

(a) Original time series without added
outliers.

(b) Added drift (December 2018 - April
2019).

(c) Added jump (February 2019 - middle
of March 2019).

(d) Added extremes.

Fig. 2. Outlier examples in sensor 104OYE for outlier value 0.2. For jump and drift,
this is 1 of the 100 created series.



6 L. van de Wiel et al.

4 Modelling and hyper-parameter tuning

In this section we give a short description of the models and algorithms used
in this study, and how we tuned their hyper-parameter settings. Input features
were used as described in Table 1. The data set is divided into training (60% of
the data), validation (20%) and testing (20%) sets. The training data is used to
fit different models which are described in this section. The validation data is
used to perform hyper-parameter tuning. The test data is used to assess model
performance. Model evaluation is performed through a synthetic outlier approach
(see Section 3.2). According to the 60% - 20% - 20% split, this means that the
training data is in the range of 05-06-2015 - 13-11-2017, the validation data ends
at 06-09-2018 and the testing data ends at 01-07-2019.

An important distinction is between univariate models that only use a sen-
sor’s own history to predict future values, and multivariate models that use the
values of other sensors. An advantage of the univariate approach is that it is
always applicable as no other time series are needed. Furthermore, large sudden
changes in values might be easy to track. If we use a multivariate approach, we
ignore a sensor’s own history and base the detection on other sensor time series.
We do this to prevent consistently predicting the same value as currently present
(working like a persistence model), which will fail to detect drift. An advantage of
the multivariate approach is that we can detect (gradual) changes which happen
in only one sensor. If a sensor is slowly drifting, for example, a multivariate ap-
proach could detect this based on data from other sensors, whereas a univariate
approach may be unable to detect this successfully.

4.1 Regression-based models

Autoregressive (AR) models AR models[2] are often used in practice for
time-series modelling, but are applied in outlier detection as well[10]. We imple-
mented AR models for univariate modelling.

We experimented with different lags used for prediction. Depending on the
target sensor, a minimum number of 3-5 lags was needed before the model sta-
bilised. Further lags had little influence, so 5 lags were picked. If a predicted
value deviated too much from the observed value, it was classified as an outlier.
Based on experiments, we selected a threshold of 4 cm. Lower values gave us too
many false alarms, with higher values we missed too many genuine outliers.

Water levels are not changing a lot in successive measurements. So, the mod-
els learn coefficients which favour predicting a similar value as the current one.

Linear regression We used linear regression with Lasso penalty[16]. We used
the validation set to determine the ideal value for Lasso penalty λ. Validation
loss for λ-values in [3.0, 1.0, 0.3, ..., 0.001, 0.0003] was reported. It is useful to
use a λ-value which scores well, but also is relatively large. Based on the 1SE
rule and the modelling ability of promising sensors, we decided to use a λ-value
of 0.03 throughout the experiments.

An issue when using linear regression for outlier detection is in defining the
outlier detection threshold. We opted for a quantile approach so we could use the



Real-Time Outlier Detection in Time Series Data of Water Sensors 7

same classification rules as in Section 3.1. To calculate the quantiles, we added
or subtracted the standard deviation of the target time series multiplied by a
scalar value to the prediction. This is shown in Equation 1.

qi = ŷ ± i

2
σ̂(ytrain) | i ∈ {1, 2, 3} (1)

A disadvantage is that this will lead to a fixed quantile width for the whole
model. Varying quantile width is desirable, as uncertainty about the predictions
can differ throughout the data.

Quantile regression forests (QRF) Parameter values of the QRF algorithm
[13] were based on experiments. We used 1000 different trees in total. For each
tree, we used the same parameter settings: A node needs to have at least 40
samples in it for it to be considered for a split, a resulting leaf node must have
at least 20 samples and the maximum number of considered features per split is
one third of the total number of features.

4.2 Neural network-based approaches

To perform neural network architecture tuning systematically, we used the Hy-
perband algorithm[11]. In the multivariate experiments we averaged the pre-
dictions of 10 different neural networks. This ensemble approach is chosen as
random weight initialisation has a sizeable effect on the model. In the univariate
experiments the ensemble size is lowered to 5, to keep running times acceptable.
Many extra predictions are needed because the input of the testing data changes
for each outlier time series, which was not the case in the multivariate modelling.

Quantile regression: Multi layer perceptron The quantile regression multi
layer perceptron (QR-MLP) model is a neural network with hidden layers that
only uses dense layers. Multiple output nodes are used to calculate values for
different quantiles. We use the pinball loss function[9][15] where all the quantiles
are taken into account. In the algorithm runs, we used early stopping with a
patience value of 5 and a mini-batch size of 128.

The Hyperband algorithm used 5 executions per trial, 3 Hyperband itera-
tions, a factor of 3 and max epochs of 30. In the end, 270 trials were run. It
selected the number of layers (1, 2, 4 or 8), number of neurons per layer (16,
32, 64, 128 or 256), dropout (0.0, 0.1, 0.2, 0.3 or 0.4) and learning rate of the
network (0.005, 0.001, 0.0005, 0.0001, 0.00005 or 0.00001).

It was not possible to find one general network architecture that works in
all cases. There seems to be some correlation between the validation loss and
the network complexity. For example, sensor 104OYE can be modelled relatively
well and only uses one layer. On the other end of the spectrum we see 102BFS
(which was selected to test the impact of its low correlation with other sensors),
which has high validation loss and needs more complex models. We decided
to use a different architecture for each sensor. Due to computational and time
restraints, we were not able to optimise different numbers of neurons per layer.
The resulting architectures are shown in Table 2.



8 L. van de Wiel et al.

Table 2. QR-MLP model architectures per sensor.

Sensor Dropout Learning rate Number
of layers

Neurons
per layer

Average valida-
tion loss of final
model

104OYE 0.4 0.0005 1 128 0.1820

103HOE 0.0 0.005 1 256 0.8790

201D 0.4 0.005 2 128 0.9580

102BFS 0.4 0.00005 8 128 1.5330

Quantile regression: Perceptron model A baseline neural network model
in the form of a QR-perceptron model was created. This network has no hidden
layers. It is somewhat similar to the linear regression model, but like in the
QR-MLP model, we use the pinball loss function with multiple output nodes.
We thus still have varying quantile width. The only hyper-parameter that needs
to be tuned is the learning rate. An exhaustive grid search is now possible.
Experiments showed that a relatively large learning rate of 0.005 works best for
this kind of model. This value was used for all the QR-perceptron models.

Quantile regression: RNNs These networks used RNN layers instead of dense
layers. We let the tuner decide if a GRU[3] or LSTM[7] kind of RNN layer should
be used. For speed, we now use at most 4 layers, a batch size of 2048 and a window
size of 32. A difference with the other multivariate approaches, is that since we
have a RNN, all these 32 values are used in every step. Also, this disallows us
from explicitly modelling features like the minimum and mean features.

Again, there did not seem to be a best overall network architecture. Moreover,
it seems that neither LSTM- nor GRU-layers work best for every network. We
use a different network architecture per sensor, as shown in Table 3.

Table 3. RNN model architectures per sensor

Sensor RNN type Dropout Learning rate Number
of layers

Neurons
per layer

Average validation
loss of final model

104OYE GRU 0.1 0.0005 1 256 0.2060

103HOE LSTM 0.0 0.005 1 256 0.9401

201D LSTM 0.4 0.001 4 64 1.3292

102BFS LSTM 0.2 0.0001 4 64 1.2330

4.3 Direct classification model: Isolation Forests (IF)

The isolation forest model[12] is often applied in the literature[5]. When using
multivariate feature sets, we can only look at outliers of a whole system (like a
group of 5 sensors), instead of at outliers of a single sensor. Also, it is mandatory



Real-Time Outlier Detection in Time Series Data of Water Sensors 9

to incorporate the history of the target sensor. Since we want to know if a specific
sensor is behaving strangely, this method is only suited for our univariate setting.

We have performed hyper-parameter tuning to determine the ideal value of
the contamination parameter. If we set the contamination value too low, we will
detect few outliers. If it is set too high, the precision of our model will drop. Our
experiments suggested a value of 0.07.

5 Results

In this section, we first describe illustrative examples for the univariate and
multivariate models. Then, we compare these models. We end this section with
a description of the practical impact of the best performing ones.

5.1 Illustrative examples: Univariate results

The QR-RNN and QRF models have not been applied to the univariate mod-
elling experiments, since this became prohibitively slow. We applied the linear
regression, QR-MLP, QR-Perceptron, AR and IF models here. We show the vi-
sual results of one specific time series of sensor 104OYE in Figure 3. We added
a jump of 0.2m from February 2019 to the middle of March 2019.

Results QR-MLP For the univariate QR-MLP models, we used the same ar-
chitecture for each sensor, as we do not have to take into account correlated time
series. This was the same architecture that was used for 104OYE in multivariate
QR-MLP modelling, as described in Table 2. Figure 3a shows that some parts
of the added jump can be detected, but this is certainly not the case for the
sequence of outliers as a whole.

(a) Using the univariate QR-MLP model. (b) Using the AR model.

Fig. 3. Plots of sensor 104OYE, with added jump.



10 L. van de Wiel et al.

Results AR AR model performance is shown in Figure 3b. We see here that the
begin and end points of the added outlier sequence can be detected. The period
in between can not be detected, though. Also, some other sudden changes in the
time series have been classified as outliers.

5.2 Illustrative example: Multivariate results QR-MLP

We compared the multivariate linear regression, QR-MLP, QR-Perceptron, QRF
and QR-RNN models. Figure 4 shows the results of the same 104OYE time
series with added jump, now modelled multivariately by QR-MLP. This jump is
detected well, but some false positives are also present. Some outliers may have
been missed by the domain experts. This is most visible around November 2018.
Results of drifts detection for all outlier values are shown in Figure 5.

Fig. 4. Quantile plot of sensor 104OYE, with added jump using the QR-MLP model.

Fig. 5. Bar plots of QR-MLP model scores of sensor 104OYE for all outliers values for
drifts. The legend shows the proportion totally missed, which indicates the proportion
of the outlier sequences missed completely. This value is 0 for each outlier value.



Real-Time Outlier Detection in Time Series Data of Water Sensors 11

5.3 Comparison of univariate and multivariate modelling techniques

The F2 scores of all models are shown in Figure 6. This figure shows how well
different multivariate and univariate models score on different outlier categories
for different sensors. We see some clear differences. To compare the performance
of these different models, we followed a two-step approach[4]. First, a Friedman
Aligned Ranks test was performed to check whether there are significant dif-
ferences between the distributions of the results of the models[6]. If this test
yielded a significant difference, we used the Nemenyi test to compare all models
pairwise.

Fig. 6. Bar plots of model performance on all data sets, univariate and multivariate
combined for outlier value 0.2.

We used the Friedman Aligned Ranks test in 8 scenarios. One of them con-
sisted of all sensors and outlier categories and sizes. We also divided the data by
outlier category and by sensor. All these distributions are significantly different
from each other (see Table 4). This is expected, as we compare many models
which have very different performances as is visible in Figure 6.

Table 4. Friedman Aligned Ranks results (α=0.05) of all experiments.

Sensors All All All All 102BFS 103HOE 104OYE 201D

Outliers All Drift Jump Extremes All All All All

χ2 118.936 100.000 115.084 60.752 38.274 36.949 39.365 51.748

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Significant? Yes Yes Yes Yes Yes Yes Yes Yes



12 L. van de Wiel et al.

We now perform the Nemenyi test to see which models have significantly dif-
ferent performance. The results are shown in Figure 7. On the horizontal axis,
the average ranking of the algorithms is shown. The further a model is to the left
on the x-axis, the better it is scoring on average. Algorithms that are connected
by a bold line are not differing significantly from each other. In the overall com-
parison of Figure 7a, the five multivariate models outperform the five univariate
ones. This is because they score better in drift and jump detection scenarios. If
we want a single model to detect all outlier types, then the multivariate QR-MLP
or QR-perceptron model seems the best choice. In the extreme outlier category
(Figure 7b), however, AR seems to perform exceptionally well. This is due to
the fact that AR almost works like a persistence model and can detect a large
sudden change easily.

(a) All data. (b) All sensors, only extremes.

Fig. 7. Nemenyi test results for univariate and multivariate models combined.

5.4 Comparison of multivariate modelling techniques

As the multivariate models outperform the univariate ones in most cases, we
zoom in further on the multivariate ones. Figure 8 gives an overview of the F2-
score results of multivariate models for outlier value 0.2m. Note that the F2-score
for extremes is low in all cases. This may be explained by the fact that fewer
outliers are added here than in the other categories. In the drift category, 17520
outlier points are added. In the jump category this number is 4320 and when
using extremes, only 100. The total number of true positives differs greatly per
method, so the roughly constant number of false positives can severely impact
precision and thus the F2-score.

We see some big differences between the models, but we also note that model
performance differs greatly per sensor. Results of the Friedman Aligned Ranks
test are shown in Table 5.

In Figure 9, the Nemenyi test result for all data is shown. QR-MLP and QR-
perceptron are significantly different from QR-RNN. Other comparisons showed
similar results. Since QR-MLP and the QR-perceptron model perform decently
most of the time, these could be go-to algorithms.



Real-Time Outlier Detection in Time Series Data of Water Sensors 13

(a) 104OYE (b) 103HOE

(c) 102BFS (d) 201D

Fig. 8. Bar plots of model performance of multivariate models on all data sets for
outlier value 0.2.

Table 5. Friedman Aligned Ranks test results (α=0.05) in multivariate experiments.

Sensors All All All All 102BFS 103HOE 104OYE 201D

Outliers All Drift Jump Extremes All All All All

χ2 14.947 10.556 8.399 4.384 3.287 4.273 11.549 22.646

p-value 0.005 0.032 0.078 0.357 0.511 0.370 0.021 0.000

Significant? Yes Yes No No No No Yes Yes

Fig. 9. Nemenyi test results for multivariate models.



14 L. van de Wiel et al.

5.5 Practical impact

An advantage of the multivariate QR-MLP model is that it generalises to many
different kinds of outliers. In Figure 10, domain experts annotated the subse-
quence between middle September 2018 and middle October 2018 as outlying.
This is detected nicely (indicated by the red dots).

Fig. 10. Outlier detection plot of 108HOL modelled by the multivariate QR-MLP
model. No synthetic outliers were added. Although the already present outlier around
October 2018 can not be detected fully, it still can be detected well.

Domain experts stated that jump values and extreme values of 0.2m are
reasonable in real life. We can derive from Figure 6 that the performance of
the best performing models is satisfactory in many cases. The domain experts
also stated that a drift is generally in between 0.05m-0.10m over the period of
a year. This roughly corresponds to the two categories of outlier values 0.02m
and 0.05m. Outliers for these values are harder to detect, as seen in Figure 5.
However, this judgement is (too) harsh, as the algorithms do detect almost every
drift sequence after some time. The experts stated that periodical checks for the
occurrence of drift are normally performed yearly. Our models need one month
on average to detect drift of value 0.05m, which leads to improvements over a
manual periodical check.

6 Conclusion and future work

In this work, we applied multivariate and univariate real-time outlier detection
models in unlabelled water height time series. Instead of only cleaning histori-
cal data, the trained models can be used to monitor sensor measurements and
directly signal outlying values. The key contribution of this work is the system-
atic comparison of algorithms and the easily parametrisable synthetic validation
scenarios which were constructed in cooperation with domain experts.



Real-Time Outlier Detection in Time Series Data of Water Sensors 15

We showed that multivariate approaches work better than univariate ap-
proaches for jump and drift outlier types. For extreme values however, univari-
ate approaches appear to outperform multivariate ones. Yet, we think that this
result will not hold in practice, because it partly is an artefact of our synthetic
evaluation procedure. Univariate outlier models basically function by signalling
large instantaneous changes. This indeed highlights extreme values, but may fail
to detect slightly more gradual ones. Also, natural (more gradual) jumps in the
data will be missed. As we only added instantaneous extreme outliers, many true
positives were present. Few other already present data points changed so quickly,
so few false positives were present. Thus, this category of models performed well
in our simulations. In real life however, extreme values occur less frequently, and
natural jumps are more apparent. Therefore, these models are likely to result in
inadequate performance when implemented in practice.

It should be noted that the multivariate modelling approach is not applicable
for all sensors (like 102BFS). A multivariate approach is only suitable when
sufficiently correlating series are available.

Within the category of multivariate models, we found that the QRF ap-
proach and the QR-RNN models performed poorly. The QRF model resulted in
very jagged quantile boundaries, which resulted in the misclassification of many
data points. The QR-RNN model often resulted in very wide quantiles, which
worsened performance. Linear regression performed relatively decently, although
the fixed quantile width remains an issue. In the end, we can conclude that the
QR-MLP and the QR-perceptron models performed the best overall.

To get a better overview how well these different models work in practice, it
is recommended that a pilot program is carried out to test the performance in a
more practical setting.

Our extreme values scenario had some artefacts. Although we selected a
realistic outlier value in cooperation with the domain experts, it is worthwhile
to investigate more realistic scenarios. An example is a more gradual extreme
value. This is fundamentally different from drift, as a gradual extreme value
could occur in a few time steps, in contrast to a duration of multiple months.
Research into a combination of different (extreme) outlier categories may also
be useful.

It may be a fruitful idea to use different models to detect different outlier
categories. For example, combining the results of an AR model and a multivariate
QR-MLP model could work to detect extreme values, jumps, and drifts.

An interesting research subtopic regards determining outlier causes. An out-
lier can be caused by multiple factors. Different kinds of outliers might require
different means of alleviation. It is of interest to determine these different causes
with additional techniques.

Another noteworthy subtopic concerns propagating sensor errors. If a sensor
malfunctions, this will not only affect its own predictions, but will affect all other
sensor predictions that make use of the values of this malfunctioning sensor as
a predictor variable as well. Further research is needed to make accurate claims
about this phenomenon.



16 L. van de Wiel et al.

References

1. Aggarwal, C.C.: Data mining: the textbook. Springer (2015)
2. Chatfield, C.: The analysis of time series: an introduction. Chapman and Hall/CRC

(2003)
3. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

4. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine learning research 7(Jan), 1–30 (2006)

5. Ding, Z., Fei, M.: An anomaly detection approach based on isolation forest algo-
rithm for streaming data using sliding window. IFAC Proceedings Volumes 46(20),
12–17 (2013)

6. Garćıa, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence
and data mining: Experimental analysis of power. Information Sciences 180(10),
2044–2064 (2010)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

8. Junger, W., de Leon, A.P.: mtsdi: Multivariate time series data imputation.
https://cran.r-project.org/web/packages/mtsdi/index.html (2012), R package ver-
sion 0.3.5.

9. Koenker, R., Hallock, K.F.: Quantile regression. Journal of economic perspectives
15(4), 143–156 (2001)

10. Leigh, C., Alsibai, O., Hyndman, R.J., Kandanaarachchi, S., King, O.C., McGree,
J.M., Neelamraju, C., Strauss, J., Talagala, P.D., Turner, R.D., et al.: A framework
for automated anomaly detection in high frequency water-quality data from in situ
sensors. Science of The Total Environment 664, 885–898 (2019)

11. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of
Machine Learning Research 18(1), 6765–6816 (2017)

12. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE Interna-
tional Conference on Data Mining. pp. 413–422. IEEE (2008)

13. Meinshausen, N.: Quantile regression forests. Journal of Machine Learning Re-
search 7(Jun), 983–999 (2006)

14. Perelman, L., Arad, J., Housh, M., Ostfeld, A.: Event detection in water distribu-
tion systems from multivariate water quality time series. Environmental science &
technology 46(15), 8212–8219 (2012)

15. Rodrigues, F., Pereira, F.C.: Beyond expectation: Deep joint mean and quantile
regression for spatio-temporal problems. arXiv preprint arXiv:1808.08798 (2018)

16. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996)

17. Van Buuren, S., Groothuis-Oudshoorn, K.: MICE: Multivariate imputation by
chained equations in R. Journal of statistical software pp. 1–68 (2010)

18. Versteeg, R., de Graaff, B.: Valdidatieplan Waterkwantiteitsmetingen (in Dutch).
STOWA 2009-20 (2009)

19. Western Electric Company: Statistical quality control handbook. Western Electric
Company (1956)

https://cran.r-project.org/web/packages/mtsdi/index.html

