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Abstract. The problem of aligning objects is essential in shape, and functional
data analysis. The observations of functions, curves, or time-series data are gener-
ally misaligned. Direct processing of such data can lose underlying structure, ar-
tificially inflate with-in class variance, and decrease overall classification perfor-
mance. This paper introduces an unsupervised, learning-based framework called
Elastic Registration Network (ElasticRegNet), that registers curve data efficiently
with high accuracy and that generalizes well beyond the training data. Further-
more, this architecture can be trained on simulated data, and with little retraining,
using the so-called transfer learning can perform well on real test data. It uses
multiple convolution layers to learn constrained diffeomorphism functions that
help align given curves. The training is based on minimizing an objective func-
tion motivated by the elastic Riemannian metric and square-root velocity repre-
sentation. We demonstrate the efficacy of this architecture using various public
datasets and compare them to the current state-of-the-art approaches.

Keywords: Functional Registration - Temporal Alignment - Time-Series Data -
Deep Learning - Riemannian Framework.

1 Introduction

The problem of registering objects is omnipresent in statistical analysis of shapes, func-
tions, and any time series. Comparing shapes of curves or surfaces, or computing statis-
tical summaries from shape data, requires pairwise dense registrations of points across
objects. Registration is a well-known bottleneck in many fields such as computational
anatomy, functional data analysis, activity recognition and shape classification. Data
collected from images and videos often come under arbitrary registrations and coordi-
nate systems. Using such unregistered data artificially inflates the data, often modifying
the class structures. Furthermore, summarizing misaligned data loses some sharp fea-
tures underlying given data. For instance, Figure 1 shows some simulated data where
each function is essentially a time-warped unimodal function. A standard analysis of
these functions loses the unimodal structure. As another example, in activity recogni-
tion, the same activity performed by different actors may not be temporally aligned,
increasing distances between them under traditional metrics. In all these cases, the reg-
istration of geometric features across curves becomes necessary to perform statistical
analysis.
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Fig. 1: The left is misaligned unimodal functions, and the right is the cross-sectional
mean with one standard deviation band. Without proper alignment, the analysis (e.g.,
mean, standard deviation) cannot capture the underlying structure of unimodal func-
tions.

In functional and curve data, registration corresponds to appropriate time warping of
functions such that their peaks and valleys are tightly aligned. This is also called phase-
amplitude separation [17,27], where the aligned functions are called the amplitudes
and the warping functions called the phases. The next question is: What should be
an objective function for defining "optimal" alignment? Secondly, what is an efficient
computational solution for solving that optimization problem for large data? The data
can be large both in terms of the length of the functions and the number of functions.
For the first question, a well-developed formulation utilizes an invariant Riemannian
metric for deriving an objective function (stated below). The main open issue lies in the
second question, deriving an optimization procedure that scales up well with the data
size.

Historically, the most common way to align functional data is Dynamic Time Warp-
ing (DTW) [24] which utilizes the dynamic programming algorithm at its core. Given
two scalar functions fi, fo : [0,7] — R, this method seeks a warping function, v :
[0, 7] — [0, T'] that starts with objective function || f; — fo 0y||?, where || - || denotes L2
norm of functions. However, this objective function is known to be degenerate because
one can make it arbitrarily small using some extreme time warpings. This phenomenon
is called the pinching effect [17,27]. Past solutions against the pinching effect include
adding regularization terms that penalize the roughness of the warping functions [1].
However, this solution has several shortcomings, including inverse inconsistency (the
solutions are not consistent if f; and f> are interchanged) and the need for a hyperpa-
rameter tuning. Despite these shortcomings, DTW and its extensions of DTW [3,21,23]
are popular.

A more fundamental solution comes from the elastic Riemannian framework [26,
27] which utilizes a different objective function, one that is based on the elastic Rie-
mannian metric and its invariant properties. While this metric has nice theoretical prop-
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erties, it originally has a form which is too complicated to be useful in the practice,
especially on large datasets. This issue is resolved by using the Square-Root Velocity
Function (SRVF) representations. For any function f : [0,7] — R, its SRVF is given
by q(t) = sign(f(t))1/|f(t)| and the SRVF of a time-warped function f o~ is given by
q*v = (qoy)\/7(t). There are several advantages of using the SRVF representation.
First, for any square-integrable ¢ and any time warping 7, we have ||g* || = ||¢||- That
is, the time-warping in the SRVF space is norm-preserving and prevents any pinching-
like effect. Second, the elastic Riemannian distance between f; and f, equals the L2
norm between their SRVFs. Consequently, the registration of f5 to f; is performed us-
ing their SRVFs ¢y and g, using: 4 = argmin., [|g; — (g2 © )+/¥||*. This optimization
is performed using the Dynamic Programming algorithm (DPA). If the functions f; and
f2 are sampled using T discrete points, then the computational cost of DTA is O(kT?),
where £ << T is a constant. If we have to align multiple functions f1, fa, ..., f,, then
we iteratively compute their aligned means p and align each given function to p, all in
SRVF space. That is, we solve for: 4; = argmin. [|x — (g; © 7)+/7||* and use them to

update the mean 1 = = 37" | ((g; 0 %;) *y). Thus, each iteration of this optimization
requires n calls to the DPA, leading to a total cost O(nkT?). When n and T become

very large, this cost becomes prohibitive.

With recent advances in learning-based solutions, researchers have started exploring
the use of deep neural networks for registering functions and curves. If successful, these
networks can be trained to handle large data sets. Furthermore, these networks can be
applied to future data from similar classes once trained. This application can be very
fast without requiring cumbersome DPA. Proper network architectures can be made to
generalize solutions to distributions beyond the training classes. One can use ideas such
as transfer learning and mild retraining to broaden the applicability of trained networks.

There have been some recent papers on function alignment using deep learning.
Jaderberg et al. [10] presented a Spatial Transformer Network (STN) that learns in-
variant spatial warps from the training data and applies these warps to image data to
enhance classification. Similarly, Lohit et al. [16] introduced a Temporal Transformer
Network (TTN) to learn time warping for optimizing classification performance. In
these approaches, the ultimate goal is classification, and they obtain alignments as a side
product. Some other papers [6, 19] have proposed a supervised deep learning approach
for curve registration. In contrast, [2,11,20,25] developed unsupervised learning-based
registration networks that do not require a template in the training stage. Some of these
architectures include regularization terms in their objective functions to control warping
levels [20,25]. As mentioned earlier, regularisation terms have limitations and require
tuning additional hyperparameters. Thus, despite recent papers, an efficient, training-
based network that aligns curve data and generalizes well to unseen data distributions
remains elusive.

This paper introduces an Elastic Registration Network (ElasticRegNet) that imple-
ments an unsupervised, learning-based registration approach. It combines the strengths
of the elastic Riemannian framework with the efficiency of deep neural networks to
provide outcomes with excellent mathematical properties and generalizability. Notably,
ElasticRegNet adapts neural network architectures that do not need any regularization
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term. It focuses on reducing the complexity of registration architecture without los-
ing registration performance. Most of the earlier learning-based registration architec-
tures [2,6,16,20] contained three parts. The first part extracts latent features from input
data, the second transforms latent features to a different space and the third maps these
transformed features into warping functions for registration. Notice that the last part
contains non-linear mappings to ensure that warpings are monotonically increasing and
satisfy boundary conditions (v(0) = 0 and v(T") = T). As a result, the trainable pa-
rameters are all in the first two parts and ideally should be distributed equally among
the two parts. In [2]. the second part’s parameter size is disproportionately larger than
the first part as that part uses fully-connected layers. In this paper, we replace those
layers with one-dimensional convolution (1D-CNN) layers and a global average pool-
ing (GAP) layer. This significantly reduces the number of parameters, while leading to
more flexible registration. Furthermore, as demonstrated later, this reduced architecture
is particularly suited to transfer learning and can perform sharper registration.

Conv. Conv. Dif feomorphisms
Input data Pre-warping Diffeomorphism Group Action

block mapping block /
Warped data
SRVF mapping A =

Fig.2: ElasticRegNet’s architecture: The input data goes through conv. pre-warping,
diffeomorphism block and SRVF-mapping blocks at the same time. The SRVF mapping
computes SRVFs of input data, and the Conv. Diffeomorphism block generates warping
functions. These two are combined in the Group action block to output registered data.

2 Proposed Approach

In this section, we introduce the architecture of the ElasticRegNet. This network is
composed of several blocks and we introduce them each next.

2.1 Conv. Learnable Pre-warping block

The first block takes input functional data (discretized into T'-length vectors) and gen-
erates latent features for producing warping functions. This block is composed of three
1D-CNN layers [14] with 16-35-T filters per layer. Additionally, we maintain a consis-
tent series-length by setting the padding size of each 1D-CNN layer to %, where k
is the filter size. Each 1D-CNN layer is followed by a rectified linear activation func-
tion (ReLU) [18] and one-dimensional batch normalization (1D-BatchNorm) layer [9].
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Synthetic data
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Fig. 3: The top row shows the training data, and the bottom row shows the test data. Each
row contains unaligned data, aligned data, the corresponding means with one standard
deviation band, and the predicted warping functions.

At the end of the block, there is a GAP layer [15] that is introduced to smoothing and

shrinking of latent features using the formula: fori = 1,...,n,j = 1,...,Ck =
1,...,T,
1 Z
Wig =D hik (1)
k=1

and where the h; ; 1 is the latent feature produced by 1D-CNN blocks, n is the batch
size, and C' is the number of filters.

The Conv. Learnable pre-warping block contributes in extracting relevant features
from input data. The 1D-CNN layers learn temporal representation, and the ReLU ap-
plies non-linear transformation on latent features; the 1D-BatchNorm layer improves
stability of optimization process. Finally, GAP layer plays a role in smoothing latent
features, resulting in flexible warping functions later. The input dimensions to this block
is n x T, and the output has size (n x T).

2.2 Diffeomorphism Mapping

The next block — diffeomorphism mapping — transforms the latent features into warping
functions for each input. This transformation ensures that warping functions to satisfy
properties of positive diffeomorphism — each + is bijective, smooth, inverse smooth,
and v(0) = 0, v(T') = T. There are no trainable parameters in this stage as it is simply
a deterministic mapping according to:
t *
Yi(t) = Tzﬁfo exp(h; (8)), t=1,...,T. 2)
2 s=o xp(h(s))

These warping functions {;} are then applied to the input functional data according
to f; — fi o~y; (next block) nd evaluated for the registration performance. The output
dimension of this mapping is (n x T).
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2.3 SRVF mapping and Objective Function

This mapping computes the SRVF of each input functional data using the formula

qi(t) = sign(fi(t))\/|fi(t)|. The time warping of the SRVF representations is given
by the mapping:

Qi(vi) = (g% %) = (g oY)/ Fini = 1,2,... .. 3

The objective function for training the network is given by:
N
E(m,..,m) = Y 1Qi(v:) — QII> @
i=1

where Q = % Zf\; Qi(:). Notice that this is a fully unsupervised setting. We train
this network using the Adam optimization algorithm [13]. The learning rate is 0.001
and number of epochs is 100. All models are implemented using Pytorch [22] on an
i7-10700K CPU @3.80GHz machine equipped with RTX 3060 GPU.

3 Experimental Results

We demonstrate the strengths of the proposed network using both simulated and real
data.

3.1 Alignment of A Simulated dataset

We start by simulating data according to

fit) = aZg(v(t) + ei(t),
where g(t) = 2sin(27t)? + 0.05 cos(27t + 1.2),

Yi(t) = Tr ot
m ~ N(0,52), e;(t) ~ N(0, (1.2)%),
a; ~ N(1,(0.2)%).

—_

®)

Figure 3 presents results from registration of this data using the ElasticRegNet.
The sample size and data length of simulated training and test datasets are 4000 and
136. The first row shows the training data and second row shows the test data. In each
row, we display: (1) the original functions, (2) their cross-sectional means, along with
one standard-deviation bands, (3) the aligned functions, (4) the cross-sectional means
of the aligned functions with one-standard-deviation bands, and (5) warping functions
produced by the ElasticRegNet. We need a way to quantify alignment performance and
we use Efil (fiovi)— = Z;V:1 (f;0;)|? for this purpose. In figure 3, this quantity
for test data drops from 0.6845 to 0.3576 through alignment, and it reveals underlying
structure of the functional data. It takes around 0.17 second to register the test data of the
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size (4000,136). Although the size of this synthetic data is modest, the traditional DTW
method- Dynamic Programming Algorithm (DPA) of Duncan et al. [5] takes around
2.77 hour to register the training data and needs to perform another run to register the
test data.

As mentioned earlier, the DTW-based methods have to revisit the algorithm when-
ever new data is added. They can not perform registration as training and test scenarios,
they take longer to execute registration. In contrast, ElasticRegNet is trained with train-
ing data and can be applied to test data without additional training procedures. The time
used to train and perform registration is much shorter than the DPA.

3.2 Alignment of Real datasets

An important advantage of the ElasticRegNet architecture lies in the moderate model
parameters size. As mentioned earlier, this architecture results in two nice properties:
(1) better registration using Transfer Learning (2) higher registration performance.

Transfer learning is a methodology that trains a network with one data domain and
then applies this pre-trained model, with some retraining, to another unseen data. The
underlying idea is that higher (or earlier) layers tend to learn more generic features,
and later layers learn specific task-related features. [2] has demonstrated the power of
transfer learning with registration by retraining a new fully-connected layer to form time
warping with a small data set. Although it is an alternative for a limited sample size,
the number of parameters in a single fully-connected layer that needs to be retrained is
still significant. In their work to train a registration with data, the number of time points
(T is 1024, over 95 per cent of parameters come from a single fully-connected layer
and will be retrained by small samples, while only less than 4 per cent of parameters
used for extracting features are from 1D-CNN layers. To improve this issue, we should
manage the parameters’ size used for retraining. Our approach utilizes a 1D-CNN layer
with a GAP layer for generating warping functions. Notice that a ID-CNN layer usually
contains fewer parameters since it only connects to nearby neurons from the preceding
layer within an adjustable size of filters. In contrast, a fully connected layer attaches to
every neuron in the preceding layer, causing more training parameters. On top of that,
the GAP layer is a transformation without parameters. Hence, the number of retrained
parameters reduces significantly, improving performance using transfer learning.

Next, we use the UCR Time Series archive data [4] to evaluate the transfer learning
with registration using the ElasticRegNet. We select seven datasets, including ECG200,
FaceALL, FiftyWords, GunpointOld Versus Young, StarlightCurves, and Yoga. We trained
our model in the following ways and compared their results.

— Train from scratch(NonTL): We train the ElasticRegNet with training data and
perform registration on test data.

— Registration with transfer learning-Retrain the last layer(TL): We train a Elas-
ticRegNet with synthetic data (5) to acquire a pre-trained model. Then, we freeze
all 1D-CNN layers, but the last one, and retrain it with training data.

— Registration with Transfer learning- retrain all layers(TL_All): We unfreeze
all 1D-CNN layers of the pre-trained model and retrain the model with training
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data. This method combines the above procedures(Non_TL and TL) and some-
times gives better performance since TL_all provides different weights initializa-
tion, which could benefit the optimization process.

We present visualized registration results using transfer learning approaches from
different real-world data. Figure 4, and figure 5 show unaligned and aligned func-
tions performed by models trained with TL, and TL_all approaches, respectively. The
datasets we use here are StarLightCurves and ECG200 as their training data size are
(152,1024), and (69,96). We can see that both transfer learning approaches(TL, and
TL_AIl) reduce variances significantly compared to the original data. We set epochs
and learning rates to be 200 and 0.001. The training times of models are 6min23s, and
68s, and test time, an amount of time to apply registration to the unseen data, are all
less than 1 second.

StarLightCurves

Unaligned data Unaligned data variance Aligned data Aligned data variance ElasticRegNet
(152,1024) 0.1754 0.0423 12

(152,1024)

y

Unaligned data  Unaligned data variance ~ Aligned data  Aligned data variance  ElasticRegNet
(1177,1024) 0.1847 (1177,1024) 0.0548 Y

Fig.4: (TL) We adopt the transfer learning method, which retrains the last 1D-CNN
layer of the pre-trained ElasticRegNet with training data(top row). The sample size of
the training data(152) is smaller than the test data(1177), but the model still produces
a clear registration result. Variance of aligned data reduces significantly from 0.1847
to 0.054 in the second row. (152,1140) is (sample size, data length). The first row is
training data, and the second row is test data. Each row contains unaligned, and aligned
data with the corresponding mean, one-band standard deviations, and predicted warping
functions.

To further investigate results of registration between train from scratch (NonTL)
and transfer learning(TL, TL_all) approaches, we tested seven real-world time-series
datasets, including ECG200, FaceAll, FiftyWords, GunpointOldVersusYoung, Medi-
callmages, StarLightCurves. For each dataset, we train the ElasticRegNet in NonTL,
TL, and TL_all approaches and compare their registration performance in terms of
variances. The learning rate and epochs are set to be 0.001 and 100, with the Adam op-
timization algorithm. Figure 6 compares registration performance using different train-
ing approaches. The green bar represents loss, orange, purple, and gray bars represent
loss with NonTL, TL, and TL_all training methods, respectively. The loss here is vari-
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ECG200

Unaligned data Unaligned data variance Aligned data  Aligned data variance
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Fig.5: (TL_AIll) Another transfer learning method, which retrains all 1D-CNN layers
of the pre-trained ElasticRegNet. The values of (69,96) correspond to (sample size, data
length). The first row is training data, and the second row is test data. We can see that the
standard deviation band of the test data shrinks and variances reduce after alignments.

ElasticRegNet: TL vs NonTL performance Training time/
Lower is better Test time
Unaligned data ECG200 |6.5s/1s
o7 NonTL
LS S
- TLall FaceALL |2m32s/1s
os | FiftyWords | 34.87s/1s
g I I
g -
5% | GunpointVe | 48.29s/1s
s rsusYoung
03 _
Medicallma | 13s/1s
StarlightCu | 6m23s/2s
o1 rves
Yoga 2m10s/1s
00
G200 e (35 ung |\ ages es  Yog?
€ e w© .“‘O\dw"“i\gd\@“ma R
unpO"
(69,96) (40,131)  (49,270)  (71,150) (18,99) (152,2024)  (137,421) Training data size 1)
N: The sample size
(64,96) (138,131)  (42,270)  (165,150) (31,99) (1177,1024)  (1393,426) Test data size L: Data length

Fig. 6: Each data is registered using NonTL, TL, and TL_all approaches, denoted by
red, purple, and gray bars, respectively. In terms of qualitative results, transfer learning
methods (purple and gray) could be better since they have similar or lower variances
than the NonTL method (red). The training and test time are both very short in all data
sizes. The test time is the length of time to register unseen data. We only include the
training and test time of NonTL methods since transfer learning approaches usually run

even faster.
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Berkley Female Growth data
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ElasticReg
Net

Fig.7: The first, second, and third rows correspond to Dynamic Programming algo-
rithm(DPA), SrvfRegNet, and ElasticRegNet. The first column is unaligned data from
left to right, and the third is aligned data using the corresponding registration model.
The second and the fourth columns are variances of unaligned and aligned data. The
last column presents warping functions generated by registration models—the warp-
ing functions provided by the ElasticRegNet are way more flexible than SrvfRegNet.
Moreover, ElasticRegNet gives the lowest variance of registered data among the three
models.

ance. The figure shows that transfer learning based approaches generally outperform
the model using the train from the scratch approach in all data sets. All methods reduce
variance noticeably. These results suggest the ElasticRegNet architecture is suited more
to transfer learning than training from scratch in various sample sizes, which can reduce
the amount of training time and obtain similar or better performance.

3.3 Flexible and Fast Registration

In order to obtain sharper alignment, it is essential to impose smoothness on warping
functions to avoid diffeomorphisms with large slopes. A common way is to include a
regularization term to the objective function [19, 20, 25], but this solution loses sym-
metry property and requires additional effort to tune hyperparameters. [2] makes use
of integration as smoothing operation. However, this way harms flexibility of warping
functions a bit. Here, we use a global average layer to shrink latent features’ dimen-
sion, which implicitly introduces smoothness to warping functions without suffering
the flaws mentioned above.

We compare our work with DPA, SrvfRegNet by registering Berkely Female growth
rate data [8] with a sample size is 54 and series length is 69. The growth rates follow
the same trend with slight variation due to individual differences of each research ob-
ject. Hence, it requires a model to produce flexible warping functions to achieve out-
standing registration. Figure 7 shows that ElasticRegNet is a better choice. In terms of
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quantitative evaluation, the ElasticRegNet provides the lowest variance of aligned data
(ElasticRegNet: 1.8041) compared with the other two methods(DPA: 1.8525, SrvfReg-
Net: 2.0551). Regarding the qualitative result, both DPA and ElasticRegNet register
data sharply with flexible warping functions. In contrast, warping functions generated
by SrvfRegNet are too smooth to conduct flexible registration.

Lastly, we would like to investigate larger datasets (sample size > 1000) regis-
tration using DPA and ElasticRegNet approaches, which are proven to achieve finer
registration. We choose Yoga and StarLightCurves datasets. Each dataset has its train-
ing and test part. The training part of StarLightCurves and Yoga are (152,1024) and
(71, 150), respectively, while test sizes are (1177, 1024) and (1393, 426) respectively.
We trained the ElasticRegNet with the training datasets and applied the resulting net-
works to the corresponding test sets. In contrast, we can only use the DPA to the test
data. As the table 1 shows, ElasticRegNet can provide aligned variance comparable to
DPA solution but with much faster execution time. Although DPA achieves a slightly
lower variance of aligned data, the training and test time of executing registration using
ElasticRegNet runs 48 (6min v.s. 4.8hr), 37 times faster (2min v.s. 1.24hr) than DPA
method on Yoga and StarLightCurves data, respectively. Both methods reduce variance
significantly when compared to the original data.

DPA ElastciRegNet
Data Var. Var. Time Var. Time
(unaligned data) | (aligned data) (Test) | (aligned data) (Train/Test)
6min2s/2s
Yoga 0.7436 0.2182 4.8hr 0.3924 (x48 times faster)
. 2minl0s/1s
StarLightCurves 0.1847 0.0285 1.24hr 0.0548 (x37 times faster)

Table 1: ElasticRegNet and the DPA methods reduce variance significantly after align-
ment. While the DPA method may achieve a slightly lower variance, it takes hours to
complete the task. In contrast, ElasticRegNet performs registration in minutes, at least
37 times faster, and provides comparable registration performance.

3.4 Comparison with State-of-Art

We compare our approach to another unsupervised, deep learning-based registration
network, Diffeomorphic Temporal Alignment Net (DTAN) [25]. We can implement
DTAN in two ways, DTAN with a smoothness prior and DTAN without a smooth prior.
Regarding DTAN with a smoothness prior, there are two additional hyper-parameters
Asmooth and Ay, and we select them to be 0.01 and 0.05 respectively by default.
All three approaches, ElasticRegNet, DTAN with and without smoothness, are trained
on training data and apply them to test data foe evaluations. The training epochs is
100 and learning rate is 0.01 with Adam optimizer. We provide registration results in
both quantitative and qualitative way on StarLightCurves, ECG200, and FaceAll test
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Fig. 8: The top row shows unaligned and aligned data under different approaches. The
second row displays corresponding means with one standard-deviation band. From left
to right: unaligned data, aligned data registered by ElasticRegNet, DTAN w/o smooth-
ness, and DTAN with smoothness. We can observe that shapes and valleys’ position
along the x-axis of aligned data registered by ElasticRegNet are well-maintained (in
the dashed line interval). On the contrary, those registered by DTAN with and w/o
smoothness are dragged leftward (outside the dashed line interval).

StarLightCurves
Aligned data Aligned data Aligned data
Unaligned data ElasticRegNet DTAN w/o smoothness DTAN with smoothness

0 20 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 20 400 600 800 1000
Aligned data variance: 0.1847  Aligned data variance: 0.0548 Aligned data variance: 0.1267  Aligned data variance: 0.0919
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Fig.9: Shapes of aligned data using DTAN with and w/o smoothness are squeezed
and distorted. On the contrary, shapes of aligned data using ElasticRegNet are well-
preserved.
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FaceAll
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Fig. 10: The Variance of aligned data warped by ElasticRegNet falls more than that
warped by DTAN methods. All methods preserve shapes of aligned data well.

datasets. Note that there are more registration models using neural networks proposed
[7,12,20], but their codes are not open to public so that we cannot include them for
comparisons.

Figure 8, 9, and 10 display unaligned and aligned data registered by ElasticRegNet,
DTAN w/o smoothness, and DT AN with smoothness. In terms of quantitative
evaluation, ElasticRegNet performs better on FaceAll, StarLightCurves while DTAN
with smoothness did better on ECG200. All three methods reduce variance significantly
compared to the original data. With regard to qualitative evaluation, ElasticRegNet is
superior to other two methods because it can better preserve the shapes of data after
alignment. That is, the shapes of aligned data are not disturbed compared to original
data. We can observe this through the bottom row in the figure 8. The shapes and valley
of aligned data, registered by ElasticRegNet, remains unchanged compared with origi-
nal data (1%¢ and 2"¢ plots from left at bottom row). In contrast, valleys of aligned data
registered by DTAN with and w/o smoothness slightly pull to the left compared with
original data (3" and 4*" plots from left at bottom row). The shapes of input data are
changed by registration approaches. In the figure 9, shapes of aligned data registered
by ElasticRegNet (2"¢ plot from left at bottom row) is well-maintained compared with
original data. However, shapes of aligned data (3"¢ and 4*" plots from left at bottom
row) are distorted by DTAN with and w/o smoothness algorithms. In Figure 10, al-
though three models maintain shapes of aligned data, ElasticRegNet reduces variance
more than DTAN methods. Therefore, ElasticRegNent can be an appropriate registra-
tion approach in terms of qualitative and quantitative evaluations.
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summary

We propose ElasticRegNet, a deep learning model combined with the strength of elas-
tic Riemannian framework for alignment. This light architecture can perform sharper
and fast registration in both small and large datasets and generalize well to unseen
datasets. Additionally, our architecture prefers more transfer learning with registration
than training the model from scratch. This can be helpful in both reducing training time
and obtaining nicer registration when the sample size is limited.
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