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Background
• Development of new decision tools in the context of Precision Livestock 

Farming is booming in the research field at present but lack of tools to 
detect stressful events or diseases, especially in calves.

• Early detection of health and welfare disturbances would help to increase 
cattle welfare and decrease the cost of treatment of cattle. 

• Automatic early detection of stressful events in calves would be a major 
contribution to the field. 

• For that It is required to identify the best accelerometer features that can 
be used to detect disturbances in calves, which is our objective in this 
study
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The highest accuracy of 90% 
with Random Forest with 

features selected using MI. 

1

 Random Forest Feature 
Importance (RFFI) results in 

a reduction in accuracy – 
probably due to overfitting. 

So better to rely on MI & Gini 
selection to find the best 
features & time-scales
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Results
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Further Information

Oshana Dissanayake
Insight Centre for Data Analytics – University College Dublin, Ireland

Email: oshana.dissanayake@ucdconnect.ie

Thank You



Spectral Entropy Libraries:
SciPy



MV = mean(abs(1st order discrete difference of the signal window))

Motion Variation


	Diapo 1
	Diapo 2
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 8
	Diapo 9
	Diapo 10

