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Temporal Patterns in Time Series

• Insights from TS can be drawn by inspecting local substructures

• Temporal patterns often approximatively repeat throughout the signal


• Window size selection (WSS) is a preliminary task for many unsupervised TS 
analytics, e.g. EMMA [6], Matrix Profile [12], ClaSP [1], …


• Hence, determining the right window size of temporal patterns is a crucial task

• TS analytics may have different requirements for window sizes
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1 heart beat (captured within 25 data points)

This temporal pattern is useful to detect 
semantic changes, anomalies or motifs in the signal
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Window Size Selection: A Classification of Strategies 

• Current WSS strategies try to detect dominant periods in signals

• Assumption: TS approximately repeats a subsequence of values


• Whole series based techniques use frequency or time domain

• Extract dominant frequency components or autocorrelated shifts 


• Subsequence based methods extract local features from TS

• Measure how well local window statistics align with global signal 

properties 
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subsequence based: comparing local properties of 
windows with varying sizeswhole series based: relating global  

signal characteristics

Traffic Volume
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Dominant Fourier Frequency (FFT)

• Fourier transform decomposes TS into sinusoid waves (Fourier coefs) 
which represent magnitudes of associated frequencies


• Whole series based method: Most dominant sinusoid wave (one with 
largest magnitude) captures a signal’s period best

• For each frequency: calculate magnitude

• Return period length of most dominant Fourier frequency


• Dominant frequency is easy to extract, but can contain false positives

• Runs in   using   additional space (n being the TS length)𝒪(n log n) 𝒪(n)
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captures the period of the signal  
(within 49 data points) 
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Highest Autocorrelation (ACF)

• Autocorrelation reports correlation of signal with delayed copy of itself for 
different shifts


• Whole series based method: Lag with highest cross-correlation captures a 
signal’s period best

• For each shift: calculate cross-correlation

• Search for correlation with highest local maximum 

• Return the associated period length


• AC peaks are very accurate, but require a peak finder to be extracted

• Runs in   using   additional space (n being the TS length)𝒪(n log n) 𝒪(n)
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The AC has a substantial deflection that captures the period of the signal (within 118 data points) 
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Hybrids: AutoPeriod and RobustPeriod

• Hybrid methods try to overcome this tradeoff by combining both approaches

• AutoPeriod [10] computes a filtered Fourier transform and assigns dominant 

frequencies to AC hills to report the top location of the selected hills as a 
dominant period


• RobustPeriod [11] removes TS trend, decouples periodicities and detects 
dominant ones using modified variants of filtered Fourier transform and AC
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Its easier to extract the most dominant TS frequency  
then its highest autocorrelation peak  

which, however, is more accurate 

FFT ACTradeoff



Window Size Selection In Unsupervised Time Series Analytics: A Review and Benchmark

Summary Statistics Subsequence (SuSS)

• SuSS [1] compares summary statistics computed over windows with the 
ones of the entire TS


• Subsequence based method: Summary statistics of appropriate window 
size are close to those of the whole signal 

• Perform exponential and binary search to locate window size with 

SuSS score larger then pre-defined threshold (fixed to 89%)

• Return the 2x the window size as period length


• Very fast due to combination of two efficient search procedures

• Runs in   using   additional space (n/w as TS/window size)𝒪(n log w) 𝒪(n)
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SuSS 
Score SuSS locates a narrow range (16 to 32 data points) in which half of the 

period length (20 data points) is found
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Multi-Window-Finder (MWF)

• Multi-Window-Finder [4] calculates moving average (MA) variances for a 
range of window size candidates


• Subsequence based method: Suitable window size has a small moving 
average variance

• For each window size: calculate MA variance

• Search for three smallest local minima in variances (using a peak finder) 

• Return their weighted mean position as period length


• Can be applied incrementally to extract multiple window sizes

• Runs in   using   additional space (m window sizes, n as TS size)𝒪(m ⋅ n) 𝒪(n)
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Benchmark Setup
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Anomaly Detection Segmentation Motif Discovery

Data Sets
HEX UCR Anomaly Benchmark 
2021 (HUAB) [5]; 250 TS each 

containing one anomaly

Time Series 
Segmentation 

Benchmark (TSSB) [1]; 
83 TS with 1-9 

segments

2 use cases (heartbeats 
[8], muscle activation 

[7])

Algorithms Matrix Profile (MP) [12], Isolation 
Forest (IF), SVM

Window [9], FLOSS [2], 
ClaSP [1]

EMMA [6], Learning 
Motifs [3]

Metrics F1 Score F1 Score Exploratory

We tested each TS data mining algorithm with different window sizes 
on benchmark data sets and compare performances
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Anomaly Detection
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•  Window size selection strategies perform comparably, but 
surprisingly better than human annotations


• AutoPeriod protrudes with weak correlation, but best-ranking 
results (hybrid approach may explain superior performance)
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Segmentation
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•  Window size selection strategies are competitive with human annotations

• Surprising, as TS have changing periods across segments


• FFT (whole series) and SuSS (subsequence) are top-ranking here, both 
may handle period changes better than AutoPeriod that performs worse
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Motif Discovery
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Window size selection strategies perform poorly, as TS 
do not have clear periods
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Summary
• We applied WSS to unsupervised time series data mining tasks


• Anomaly detection: the change of the period can even indicate 
the anomaly (AutoPeriod has superior performance)


• Segmentation: each segment may have its own window size 
(FFT and SuSS can handle this best)


• Motif discovery: TS must not be periodical, optimal window 
size may be independent of period (all methods gave 
unsatisfactory results)


• Global ranking (across tasks): FFT, AutoPeriod / SuSS, ACF / 
MWF, human annotations, RobustPeriod


• Future work should consider …

• non-periodic TS or ones with multiple dominant periods

• Incremental / online detection of multiple window sizes

• Testing more data mining algorithms on more data
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Code, Data and Experiments are available on 
https://github.com/ermshaua/window-size-selection 

Mail: ermshaua@informatik.hu-berlin.de 
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