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Problem 
Definition
• Time series forecasting is a 

vital problem: climate, 
weather, energy

• Multi-horizon forecasting is a 
critical demand: early sever 
weather events forecasting

• Given the input data prior to 
time step t0, the task is to 
predict the variables of 
interest for multiple steps into 
the future from t0 to t0+𝑇. 
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Background: Transformers

• Transformers can incorporate any 
observations of the series; it 
renders them more suitable for 
capturing similarities in the longer 
past.
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Background: 
Issues arising from point-wise attention
• Point-wise attention only considers 

the information at time step 𝑖 and 𝑗
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Temporal Attention

• Temporal attention is achieved by 
deriving query and key vectors from 
a temporal context with length w 
preceding time step 𝑖
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One Limitation of Temporal Attention

• Context length is of a fixed size
• A noise introduced by an excessive large context length can be 

misleading
• We propose an alternative for this problem to choose an 

optimal context length for each query and key



Adjustable Context-
aware Attention

• We hypothesize that a 
successful needs to 
switch between 
different lengths 
dynamically depending 
on the situation.
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Adjustable Context-aware Transformer

• We consider multiple context when 
computing the attention score and 
make the selection of the ideal 
context length part of the 
prediction problem using the 
following model:
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Adjustable Context-aware Transformer

• The downside is the demand of resources
• Our model needs to explore all possible context-aware key and 

key pair 
• For an attention model with 𝑄 queries, 𝐾 keys, and 𝑊 context 

lengths, computing the attention weights requires 𝒪(𝑊.𝑄. 𝐾)
space and time. 



(Efficient) Adjustable Context-aware 
Transformer
• We propose to subsample the time 

points for estimating the attention 
scores

N12N11N10N9N8N7

T12T11T10T9T8T7

N6N5N4N3N2N1

T6T5T4T3T2T1

aLM,3

\12\11\10\9\8\7\6\1\2\3\2\1

THPSRUaO CRQWH[WV

aLM,4
aLM,5

Ma[



Experiments: Datasets

• Electricity: The univariate Electricity Load Diagrams dataset, 
containing the electricity consumption of 370 customers, hourly 
level.

• Traffic: A Univariate dataset containing occupancy rate of 440 SF 
Bay Area, hourly level. 

• Watershed: This multivariate dataset contains hydrological 
streamflow responses of ten watershed sites, 15 minutes level.



Experiments: Baselines

• ARIMA: Auto-regressive integrated moving average. 
• LSTM: Long short-term memory networks
• Transformer: A single layer transformer equivalent to our 

approach with the basic multi-head attention.
• Trans-multi: A three encoder layer and one decoder layer 

transformer with multi-head basic attention.
• CNN-trans:  A single layer transformer with convolutional multi-

head attention.



Main Results



The Importance of Our Model



Conclusion

• We propose ACAT, the adjustable context-aware transformer.
• ACAT automatically selects the ideal context size to obtain the 

best forecasting results.
• ACAT model obtains performance improvements over state-of-

the-art temporal attention approaches.
• This indicates that incorporating the ideal context length in the 

query-key similarity of the attention mechanism can improve the 
forecasting quality.
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