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Time Series Classification (TSC)

Time series classification is
the problem of labelling unseen
time series.

For example: Did the
participant perform a
successful countermovement
jump ?
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Motivation
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Motivation

A challenge of symbolic time series classifiers Is the large feature
space.

However, do we really need complex feature selection methods
(e.g. iIn WEASEL and MrSEQL) ?

Linear models appear to be still a good choice for time series
classification.

Fast and simple methods always have the advantage in practice.
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Contributions

« We propose MrSQM, a symbolic time series classifier which builds
on multiple symbolic representations, random seguence mining
and a linear classifier.

« Extensive empirical study comparing accuracy and runtime of
MrSQM to recent state-of-the-art.

 All our code and data is publicly available at
https://github.com/mlgig/mrsgm
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https://github.com/mlgig/mrsqm

Methodology
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Fig. 1. Workflow for the MrSQM time series classifier with 3 stages: 1. symbolic trans-
form, 2. feature transform, 3. classifier learning.
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Methodology

acch ccbha
. . bb
« Symbolic Transformation: SAX or SFA Y :)::ccbz —
« Transformation parameters: window size, deed caac
word length, alphabet size.
| - abbbc cddab
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* Number of symbolic representations: k*log(L) . a:efﬁaal;
where K is a hyperparameter and L is the : a eeee
afaa ddeff

length of time series.
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Methodology

« SQM: sampling random subsequences.

« Feature values: 1 if the subsequence is found
in the time series symbolic representation and
O if not.

« Optional: Feature selection.

« Concatenating the 0/1 feature vectors from
different symbolic representations.
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Methodology

Three main building blocks:

« Symbolic transformation: numerical time series to multiple symbolic
representations (SAX or SFA).

» Feature transformation: Random subsequences as features.

« Learning algorithm: Logistic regression.

Variants of MrSQM:

« MrSQM-R: Based variants with three stages as above.
« MrSQM-RS: includes an extra step of feature selection after random
sampling of features.
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Experiments

Experiment Setup:
« Data: 108 fixed-length univariate time series datasets from the UEA/UCR
Archive (timeseriesclassification.com)

« System: Linux workstation with an Intel Core i7-7700 Processor and 32GB
memory.

Questions:

* Which MrSQM variant is more accurate ? Ror RS ?

« Which transformation is more suitable ? SAX or SFA ?

* How is the runtime-accuracy tradeoff ? How does increasing the number of
symbolic representations impact the performance ?

 How does MrSQM compare to the state-of-the-art time series classifiers ?

VistaMilk

Digitalising Dairy



Experiments
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Fig. 3. Comparison of combinations between two variants of MrSQM and two symbolic
representations.
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Experiments
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Fig.5. Comparison of average accuracy and total training and prediction time (min-
utes) for MrSQM-SFA variants at varying k& and MrSEQL variants as baseline.
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Experiments
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Fig. 7. Comparison of state-of-the-art symbolic time series classifiers across 112

UEA/UCR TSC datasets. The leftmost method has the best average rank.

Digitalising Dairy

VistaMilk



Experiments

3 4 5 6
| | | J
TS-CHIEF InceptionTime
HIVE-COTE v1.0 MrSQM_k5
ROCKET MrSEQL-SS

MiniROCKET

Fig. 8. Comparison with state-of-the-art time series classifiers across 112 UEA /UCR
TSC datasets. The leftmost method has the best average rank.
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Experiments
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Conclusions

« We presented MrSQM, a simple and efficient classifier that
achieves state-of-the-art accuracy on the UEA/UCR time series
classification benchmark.

 Linear classifiers working in large feature space are very effective.

* Future work: extend MrSQM to multivariate time series.

 All our code and data is publicly available at
https://github.com/mligig/mrsgm
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https://github.com/mlgig/mrsqm
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Experiments
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Fig. 9. Pairwise comparison between state-of-the-art time series classifiers and MrSQM
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with regard to accuracy across 112 UEA /UCR TSC datasets.
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Experiments
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Fig. 6. Comparison between variants of MrSQM with different ratios of SAX and SFA

representations. ki : k2 means MrSQM generates k1 x log(L) SAX representations and
ko x log(L) SFA representations.
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Experiments
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