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Why causality?

I Machine learning systems lack:

I ability to capture how the world works
I react to events different from the training set
I go beyond correlation relationships
I capacity to answer what if, intervention, and counterfactual

questions

I Was it the new powder that caused an increasing in porosity?
I What if my train had not been late?
I How effective is a treatment in preventing a disease?
I Can hiring records prove an employer guilty of gender

discrimination?
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Why causality for time series?

I Causality is crucial for explanatory purpose, since an effect
can be explained by its causes, regardless of the correlations it
may have with other variables

I Time series are everywhere but you know that ;)
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Figure: Running example: a diamond structure with self causes.
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Causal graphs for time series
A d-variate time series X of continuous values
For a fixed t, each Xt is a vector (X 1

t , . . . ,X d
t ),

in which X p
t is the measurement of the pth time series at time t.
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Figure: Full time causal graph.

A causal graph for a multivariate time series X is said to be
consistent throughout time if all the causal relationships remain
constant in direction throughout time.
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Classical Assumptions
I A set of variables is said to be causally sufficient if all

common causes of all variables are observed.
I A causal relation between two variables is said to satisfy the

temporal priority if it is oriented in such a way that the cause
occurred before its effect.

I Causal Markov Condition: (conditional) independence in the
graph leads to (conditional) independence in the data.

X 1
t− X 1

t

X 2
t− X 2

t

X 1
t |= X 2

t | X 1
t−

I Minimality condition: the graph does not contain
dependencies not present in the observational data.

I Faithfulness: only the conditional independence relations true
in the data are entailed by the Causal Markov condition
applied to the graph.
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Granger Causality

X p Granger-causes X q if past values of X p provide unique
statistically significant information about future values of X q.

Pairwise Granger causality
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Granger Causality

X p Granger-causes X q if past values of X p provide unique
statistically significant information about future values of X q.

Pairwise Granger causality

X q
t = aq,0 +

τ

∑
i=1

aq,iX
q
t−i + ξqt , (Mres)

X q
t = aq,0 +

τ

∑
i=1

aq,iX
q
t−i +

τ

∑
i=1

ap,iX
p
t−i + ξqt , (Mfull)

Statistical test (e.g. F -test) can be used to determine whether
(Mfull) is significantly better than (Mres),

H0: X p does not Granger-cause X q.
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Granger Causality

X p Granger-causes X q if past values of X p provide unique
statistically significant information about future values of X q.

Pairwise Granger causality

Init.
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Figure: Running example: structure inferred by the pairwise Granger
method (an arbitrary order has been chosen for the example).
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Granger Causality

X p Granger-causes X q if past values of X p provide unique
statistically significant information about future values of X q.

Pairwise Granger causality

Step 6
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Figure: Running example: structure inferred by the pairwise Granger
method (an arbitrary order has been chosen for the example).
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Granger Causality

Multivariate Granger causality

X q
t = aq,0 +

d

∑
r=1
r 6=p

τ

∑
i=1

ar ,iX
p
t−i + ξqt , (mvMres)

X q
t = aq,0 +

d

∑
r=1

τ

∑
i=1

ar ,iX
r
t−i + ξqt , (mvMfull)

Extensions

I Non-linear associations

I Nonstationnarity
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Constraint-based approaches

Constraint-based approaches exploit conditional independencies to
build a skeleton between variables. This skeleton is then oriented
according to a set of rules that define constraints on admissible
orientations.

Assumptions

I Causal Markov Condition

I Faithfulness
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Constraint-based approaches

Constraint-based approaches exploit conditional independencies to
build a skeleton between variables. This skeleton is then oriented
according to a set of rules that define constraints on admissible
orientations.

Assumptions

I Causal Markov Condition

I Faithfulness

v -structures (colliders): only structures which can be oriented
without ambiguity.

X p

X r

X q
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Constraint-based approaches
Constraint-based approaches exploit conditional independencies to
build a skeleton between variables. This skeleton is then oriented
according to a set of rules that define constraints on admissible
orientations.

Assumptions
I Causal Markov Condition
I Faithfulness

X p

X r

X q X p

X r

X q X p

X r

X q

Figure: Three equivalent structures: X p |= X q |X r

Markov equivalence class: set of DAGs that encode the same set
of conditional independencies.
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Constraint-based approaches
PCMCI

Full graph
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Figure: Running example: structure inferred by PCMCI with
instantaneous relations.
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Constraint-based approaches
PCMCI

Independence
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Constraint-based approaches
PCMCI

Conditional independence
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Constraint-based approaches
PCMCI

Orientation with time
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Constraint-based approaches
PCMCI

Orientation with PC
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Noise-based approaches

Causal system described by a set of equations, where each
equation explains one variable of the system in terms of its direct
causes and some additional noise.

Assumptions

I Causal Markov Condition

I Minimality

Can deal with 2 variables
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Noise-based approaches
Additive Noise Models

Additive noise model with nonlinear functions

X p = ξp,

X q = fq(X
p) + ξq with X p |= ξq.
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Noise-based approaches
Additive Noise Models

Additive noise model with nonlinear functions

X p = ξp,

X q = fq(X
p) + ξq with X p |= ξq.

Theorem (Identifiability of ANMs)

Assume that the conditional distribution of X q | X p admits a
smooth ANM, and that there exists xq ∈ R such that, for almost
all xp ∈ R,

(log pξq )
′′(xq − fq(xp))f

′
q(xp) 6= 0.

Then, the set of log densities log pX for which the obtained joint
distribution PX p ,X q admits a smooth ANM from X q to X p is
contained in a 3-dimensional affine space.
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Noise-based approaches
Additive Noise Models

Additive noise model with nonlinear functions

X p = ξp,

X q = fq(X
p) + ξq with X p |= ξq.

Principle (Multivariate additive noise principle)

Suppose we are given a joint distribution P(X 1, · · · ,X d ). If it
satisfies an identifiable Additive Noise Model such that
{(X p

t−j )1≤p 6=q≤d ,0≤j≤τ, (X q
t−j )1≤j≤τ} → X q, then it is likely that

{(X p
t−j )1≤p 6=q≤d ,0≤j≤τ, (X q

t−j )1≤j≤τ} precedes X q in the causal
order.
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Noise-based approaches
VarLINGAM

Empty graph
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Figure: Running example: structured inferred by VarLiNGAM.
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Noise-based approaches
VarLINGAM

Causal order: X s
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Noise-based approaches
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Causal order: X s ,X p
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Noise-based approaches
VarLINGAM

Causal order: X s ,X p,X q
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Noise-based approaches
VarLINGAM

Causal order: X s ,X p,X q,X r
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Noise-based approaches
VarLINGAM

Lasso

X s
t−1 X s

t

X p
t−1 X p

t

X q
t−1 X q

t

X r
t−1 X r

t

Figure: Running example: structured inferred by VarLiNGAM.
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NBCB1

A mix between noise-based and constraint-based approaches

Assumptions

I Causal Markov Condition

I Adjacency faithfulness: if X p and X q are adjacent, then they
are not conditionally independent given any subset of vertices
except Xp,Xq.

I Minimality

Representation of the time series
Optimal lag γpq and (λpq, λqp) the optimal windows:

γpq, λpq, λqp = argmax
γ≥0,λ1,λ2

h(X q
t :t+λ2

| X q
t−1,X p

t−γ−1)

− h(X q
t :t+λ2

| X p
t−γ−1:t−γ+λ1

,X q
t−1).

where h denotes the entropy.

1ECMLPKDD 2021
E. Devijver, C. K. Assaad, E. Gaussier
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NBCB
A mix between noise-based and constraint-based approaches

Step 1: causal ordering (additive noise model)
Last place: time series which yields the residuals that are more
independent to the other time series.
Step 2: pruning to remove spurious relations

TCE(X p → X q | XR) =

min
Γri
≥0, 1≤i≤K

h(X q
t :t+λqp

| (X ri
t−Γpq|ri

)1≤i≤K ,X q
t−1,X p

t−γpq−1)

− h(X q
t :t+λqp

| (X ri
t−Γpq|ri

)1≤i≤K ,X p
t−γpq−1:t−γpq+λpq

,X q
t−1),

where Γpq|r1
, · · · , Γpq|rK are the lags between XR and X q.
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NBCB
A mix between noise-based and constraint-based approaches

Empty graph
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Figure: Running example: structured inferred by NBCB.
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NBCB
A mix between noise-based and constraint-based approaches

Causal order: X r
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NBCB
A mix between noise-based and constraint-based approaches

Causal order: X r ,X q
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NBCB
A mix between noise-based and constraint-based approaches

Causal order: X r ,X q,X p
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NBCB
A mix between noise-based and constraint-based approaches

Causal order: X r ,X q,X p,X s
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NBCB
A mix between noise-based and constraint-based approaches

Conditional independence using TCE
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Figure: Running example: structured inferred by NBCB.
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Experiments

Table: Structures of simulated data.

Fork V-structure Mediator Diamond

X 1

X 2

X 3

X 1

X 2

X 3

X 1

X 2

X 3

X 1

X 2 X 3

X 4
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Experiments
Simulated data 1

Table: Results obtained on the simulated data for the different structures
with 1000 observations. We report the mean and the standard deviation
of the F1 score. The best results are in bold.

V-struct Fork Mediator Diamond

GC 0.37± 0.25 0.44± 0.38 0.83± 0.22 0.66± 0.26
PCMCI 0.67± 0.37 0.78± 0.17 0.84± 0.09 0.82± 0.16

VarLiNGAM 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.03± 0.08
TiMINo 0.65± 0.37 0.52± 0.44 0.80± 0.19 0.60± 0.25

NBCB 0.67± 0.28 0.67± 0.38 0.66± 0.32 0.71± 0.16
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Experiments
Simulated data 2

Table: Results obtained on the unfaithful simulated data for the different
structures with 1000 observations. We report the mean and the standard
deviation of the F1 score. The best results are in bold.

unfaith. Mediator unfaith. Diamond

GC 0.12± 0.27 0.14± 0.23
PCMCI 0.05± 0.15 0.20± 0.22

VarLiNGAM 0.0± 0.0 0.02± 0.06
TiMINo 0.64± 0.08 0.49± 0.03

NBCB 0.56± 0.26 0.5± 0.31

E. Devijver, C. K. Assaad, E. Gaussier



Experiments
Real datasets

Table: Results for real datasets. We report the mean and the standard
deviation of the F1 score.

Temperature Diary FMRI

GC 0.66 0.33 0.24± 0.18
PCMCI 1 0.5 0.22± 0.18

VarLiNGAM 0 0.0 0.49± 0.28
TiMINo 0 0.0 0.32± 0.11

NBCB 1 0.8 0.40± 0.21

E. Devijver, C. K. Assaad, E. Gaussier
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PCGCE2: discover an extended summary causal graph
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PCGCE: discover an extended summary causal graph
Assumptions

I Causal Markov condition

I Faithfulness

I Causal sufficiency for PCGCE (but extension to FCIGCE)

Measure: Greedy Causation Entropy (GCE)

GCE(X p → X q |XPa,XPr)

:=I (X q
t ;X p

t−γ:t−1|X
Pa1
t− , · · · ,XPal

t− ,XPr1
t , · · · ,XPrm

t )

I γ: maximum gap between a cause and its effect
I X p

t− do not cause X q
t iff there exists

I XPr = {XPr1
t , · · · ,XPrm

t } and XPa = {XPa1
t− , · · · ,XPal

t− } s.t.
I GCE(X p → X q |XPa,XPr) = 0 (1)

I Sepset(p ↔ q) = smallest XPa,XPr that satisfy (1)

Estimation and testing
kNN estimator and local permutation test

E. Devijver, C. K. Assaad, E. Gaussier
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PCGCE: discover an extended summary causal graph
Running example

Full graph
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Figure: Running example: structure inferred by PCGCE with
instantaneous relations.
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PCGCE: discover an extended summary causal graph
Running example
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PCGCE: discover an extended summary causal graph
Running example

Orientation with time

X s
t− X s

t

X p
t− X p

t

X q
t− X q

t

X r
t− X r

t

Figure: Running example: structure inferred by PCGCE with
instantaneous relations.

E. Devijver, C. K. Assaad, E. Gaussier



PCGCE: discover an extended summary causal graph
Running example
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PCGCE
Experiments and conclusion

I Several experiments to understand the gain

I Performances comparable to PCMCI, but algorithm much
faster

I PCGCE and FCIGCE can loose performance for high
maximum time lags, compared to window-approaches

I We can think of reducing the dimension of the past slice
(using autoencoders?)

E. Devijver, C. K. Assaad, E. Gaussier
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Conclusion and perspectives

I Many families to discover causal graph for time series (more
than the one introduced here: score-based, logic-based,
topology-based, difference-based)

I Hybrid methods can take benefit of several worlds

I An important question is: which causal graph do we want to
infer?

I The representation of time series is essential (windows - lags)

I Causal discovery on mixed data? Ongoing work with Lei Zan

I Interventions in graphs for time series? Ongoing work with
Anouar Meynaoui

I Some ad: we are organizing a trimester on causality (between
Paris, Grenoble and Saclay) in April, May, June 2023!

E. Devijver, C. K. Assaad, E. Gaussier
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