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Motivation: kinetic equations
[Dolbeault,2002]

The purpose of kinetic equations is the description of dilute particle gases at
an intermediate scale between the microscopic scale and the
hydrodynamical scale.

Dilute gases: system with a large number of particles, for which a
description of the position and of the velocity of each particle is irrelevant, but
for which the decription cannot be reduced to the computation of an average
velocity at any time t ∈ R+ and any position x ∈ R3.

One wants to take into account more than one possible velocity at each point,
and the description has therefore to be done at the level of the phase space
(at a statistical level) by a distribution function

f (t , x , v) t ∈ R+, x ∈ R3, v ∈ R3

Normalization condition:∫
x∈R3

∫
v∈R3

f (t , x , v) dv dx = 1.

Particle density:

ρ(t , x) =

∫
v∈R3

f (t , x , v) dv .
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Transport equation

Since f describes the statistical evolution of the system of particles, f has to
be constant along the characteristics (X (t),V (t)) in the phase space given
by Newtonâs law:

dX
dt

= V ,
dV
dt

= F (t ,X (t))

where F (t ,X (t)) is the force acting on a particle located at position X (t) at
time t .
If F derives from a potential U(t , x), we have F (t , x) = −∇x U(t , x).

0 =
d
dt

(f (t ,X (t),V (t))) = ∂t f + V (t) · ∇x f + F (t ,X (t)) · ∇v f .

Therefore, f has to satisfy the so-called transport equation

∂t f + v · ∇x f + F (t , x) · ∇v f = 0.
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Vlasov-Poisson system
Mean-field approximation for electrically charged particles (electrons here):
Vlasov-Poisson (VP) system

f (0, x , v) = f0(x , v),
∂t f + v · ∇x f + F (t , x) · ∇v f = 0,
F (t , x) = −∇x U(t , x),

∆x U(t , x) = 1− ρ(t , x).

Applications:
• Plasma physics;
• Electron transport in semiconductors.

4 / 20



Motivation Symplectic structure and time discretization Tensor method Numerical results

Vlasov-Poisson system

Time-dependent system of equations in R+ × R3 × R3:
f (0, x , v) = f0(x , v),
∂t f + v · ∇x f + F (t , x) · ∇v f = 0,
∆x U(t , x) = 1− ρ(t , x),
F (t , x) = −∇x U(t , x).

(1)

[Lions, Perthame,1991]

Theorem
If f0 ∈ L1(R3 × R3)× L∞(R3 × R3) satisfies the following condition∫

R3×R3
|v |mf0(x , v) dx dv < +∞ for some m > 3,

then, there exists a global strong non-negative solution f to (1) so that

f ∈ C(R+; L1(R3 × R3)) ∩ L∞(R+ × R3 × R3).
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Classical numerical methods

Classical numerical methods:
• Stochastic particle methods (Particle In Cell): subject to statistical noise;

[Birdsall, 1991], [Brackbill, 2016], [Cazeaux,Hesthaven,2014]

• Semi-lagrangian methods: used for 1D-1D and 2D-2D simulations, few
3D-3D calculations Crouseilles, Desprès, Faou, Sonnendrücker... ;

• Full eulerian methods: idem. [Filbet, Sonnendrücker, 2003]

What about tensor methods? [Kormann,2015] Tensor train format for
semi-lagrangian method.

We wish to design a method which
• is based on a full eulerian method;
• allows for arbitrary spatial (or eventually velocity) domain geometries.

Let Ωx ,Ωv ⊂ R3 and consider the resolution of (1) on Ωx × Ωv with
appropriate boundary conditions (typically periodic or Dirichlet).
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Tensor notation

For any functions r : Ωx → R and s : Ωv → R, we use the notation

r ⊗ s :

{
Ωx × Ωv → R

(x , v) 7→ r(x)s(v).

For any linear operator A (respectively B) acting on real-valued functions
defined on Ωx (respectively Ωv ), A⊗ B is the linear operator acting on
real-valued functions defined on Ωx × Ωv so that

(A⊗ B)(r ⊗ s) = (Ar)⊗ (Bs), for all r : Ωx → R, s : Ωv → R.
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Principle of the method

It is natural to think about tensor methods since

∂t f +

(
3∑

i=1

∂xi ⊗ vi +
3∑

i=1

Fi (x , t)⊗ ∂vi

)
f = 0.

Assume that

f0(x , v) =

n0∑
k=1

r 0
k (x)s0

k (v) =

n0∑
k=1

r 0
k ⊗ s0

k (x , v).

Goal: find an approximation of f (t , x , v) under a separated form

f (t , x , v) ≈
nt∑

k=1

rk (x , t)sk (v , t),

using only 3D (and not 6D) linear problems.

Main tool: modified version of the POD/PGD method.
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Hamiltonian structure of the Vlasov-Poisson system

Hamiltonian:

H =

∫
x∈Ωx

∫
v∈Ωv

1
2
|v |2f (t , x , v) dxdv +

∫
x∈Ωx

ρ(t , x)U(t , x) dx .

Let us introduce the reduced Poisson bracket :

{a, b} := ∇x a · ∇v b −∇v a · ∇x b.

As highlighted in t, the Vlasov-Poisson system can be rewritten as

∂t f = −{f , h},

where h := 1
2 |v |

2 + U is the reduced hamiltonian.
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Symplectic time-discretization scheme

Introduce a time step ∆t > 0, and tm := m∆t for all m ∈ N∗. For all m ∈ N∗,

f (m)(x , v) ≈ f (tm, x , v).

3-step symplectic scheme which respects the tensor structure of the
equations:

(
I + ∆t

2 F (m)(x) · ∇v

)
f (m+1/3) =

(
I − ∆t

2 v · ∇x
)

f (m),(
I + ∆t

2 v · ∇x
)

f (m+2/3) = f (m+1/3),

f (m+1) =
(

I − ∆t
2 F (m+2/3)(x) · ∇v

)
f (m+2/3),
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Fully discretized setting

Suppose that x-dependent (respectively v -dependent) functions are
discretized using Nx (respectively Nv ) degrees of freedom.

Fully discretized scheme:
(

I + ∆t
2

∑3
i=1 F m

i,x ⊗ Di,v

)
f (m+1/3) =

(
I − ∆t

2

∑3
i=1 Vi,v ⊗ Di,x

)
f (m),(

I + ∆t
2

∑3
i=1 Vi ⊗ Di,x

)
f (m+2/3) = I f (m+1/3),

I f (m+1) =
(

I − ∆t
2

∑3
i=1 F m+2/3

i,x · ∇v

)
f (m+2/3),

where
I = Ix ⊗ Iv is the mass matrix

and F m
i,x ,F

m+2/3
i,x ,Di,x , Ix ∈ RNx×Nx and Di,v ,Vi,v , Iv ∈ RNv×Nv , and

f (m), f (m+1/3), f (m+2/3), f (m+1) ∈ RNx×Nv .

11 / 20



Motivation Symplectic structure and time discretization Tensor method Numerical results

Elementary step of the scheme
Each elementary step of this time-discretization scheme can be rewritten in
the following form: for all i ∈ N∗,

(I + ∆tP) f ( i+1
3 ) = (I + ∆tQ) f ( i

3 ), (2)

for some operators P and Q that can be written as the sum of at most 3
tensorized operators.

Thus, denoting by δf := f ( i+1
3 ) − f ( i

3 ), (2) boils down to solving

(I + ∆tP) δf = g, (3)

where g is a sum of tensorized functions.

Full fixed-point iteration algorithm for (3): Start from an initial guess δf 0.
For all j ∈ N∗, compute

I δf j = g −∆tPδf j−1.

It would converge if ‖∆tP‖ < 1. This is not true in general in infinite
dimension but can be obtained in a discretized setting up to choosing ∆t
sufficiently small.
However, this would lead to a decomposition of δf with a potentially very high
number of tensorized functions...

12 / 20



Motivation Symplectic structure and time discretization Tensor method Numerical results

Fixed-point POD/PGD

Let
• Hx and Hv be two Hilbert spaces;
• I = Ix ⊗ Iv where Ix (respectively Iv ) is a bounded self-adjoint coercive

operator on Hx (respectively on Hv );
• P =

∑N
q=1 Pq

x ⊗ Pq
v where Pq

x ∈ L(Hx ) and Pq
v ∈ L(Hv );

• g ∈ Hx ⊗ Hv .

Consider the following algorithm for the resolution of (I + ∆tP)δf = g.

1. Start from the initial guess δf 0 = 0.

2. For all n ∈ N∗, compute (rn, sn) ∈ Hx × Hv so that

(rn, sn) ∈ argmin
(r,s)∈Hx×Hv

‖g −∆tPδf n−1 − I r ⊗ s‖Hx⊗Hv . (4)

3. Define δf n := δf n−1 + rn ⊗ sn.

4. Set n := n + 1 and go back to step 2.
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Fixed-point POD/PGD

Extending results of [Cancès, E., Lelièvre,2013]

Proposition (E., Lombardi, 2016)
Let κ := max1≤q≤N ‖I−1

x Pq
x ⊗ I−1

v Pq
v ‖. Then, the fixed-point POD/PGD

algorithm converges provided that the following condition holds

3∆tNκ < 1. (5)

Note that (5) is independent on the dimension of the spaces Hx and Hv .

In practice, problems of the form (4) are solved using a standard ALS
procedure.
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Back to the Vlasov-Poisson context

Instead, we use the following algorithm for the resolution of (3) in the fully
discretized setting.
Let η > 0 be an error threshold.

1. Start from the initial guess δf 0 = 0.

2. For all n ∈ N∗, compute (rn, sn) ∈ RNx × RNv so that

(rn, sn) ∈ argmin
(r,s)∈RNx×RNv

‖g −∆tPδf n−1 − I r ⊗ s‖RNx⊗RNv . (6)

3. Define δf n := δf n−1 + rn ⊗ sn.

4. If ‖rn ⊗ sn‖ < η, then stop. Otherwise, n := n + 1 and go back to step 2.

Let nδf be the final value of n so that at the end of the algorithm

δf nδf =

nδf∑
k=1

rk ⊗ sk .

In practice, nδf is much lower than the rank which would have been obtained
using a full fixed-point algorithm.
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Recompression step
Assume that f ( i

3 ) was known under a separated form

f ( i
3 ) =

n i
3∑

k=1

r̃k ⊗ s̃k .

Then, we have obtained an approximated representation of f ( i+1
3 ) with rank

n i
3

+ nδf given by

f
( i+1

3 )
=

n i
3∑

k=1

r̃k ⊗ s̃k +

nδf∑
k=1

rk ⊗ sk .

The final approximation of f
( i+1

3 )
is given by

POD
(

f
( i+1

3 )
, η

)
which amounts to computing:
• the QR decomosition of two matrices, respectively of size

(n i
3

+ nδf )× Nx and (n i
3

+ nδf )× Nv ;

• the SVD of a matrix of size (n i
3

+ nδf )× (n i
3

+ nδf ).
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Good news
Two-stream instability test case.

1D-1D test case:

f0(x , v) = (1 + β cos(kx))

(
1√
4π

e−(v−v0))2/2 +
1√
4π

e−(v+v0))2/2
)

3D-3D test case
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Bad news

Evolution of the ranks
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Summary and perspectives

• Numerical tensor method which adaptively adapts the rank of the
decomposition during time evolution for the Vlasov-Poisson system (fully
eulerian method).

• Encouraging preliminary numerical results, even in 3D-3D.
• Numerical observation: the rank of the solution seems to increase

linearly with time... which are not good news a priori for long time
simulations!

• Parallelize and speed up the method: ongoing work on a domain
decomposition method (joint work with Damiano Lombardi and Athmane
Bakhta). Different separated representations of the solution on each
subdomain automatically leads to a decrease of the rank.

• Rigorous error analysis of the method. “Cleaner” control of the
approximation parameter η.

• Apply the algorithm to other types of kinetic equations (Vlasov-Maxwell,
Boltzmann).
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