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Motivation

⌦ = ⌦x ⇥ ⌦# ⇥ R+

High-dimensional Partial Differential Equations
Kinetic Theory: ⌦ = ⌦x ⇥ ⌦v ⇥ R+

Optimal Transport: ⌦ = ⌦1 ⇥ . . .⇥ ⌦k, ⌦i ✓ Rd

Uncertainty Quantification: 

…

Solution approximation
Curse of dimensionality:  N / Cd

Numerical approximation by standard methods is unfeasible
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The Vlasov-Poisson system

Normalization:

Z

⌦x

Z

⌦v

f(t, x, v) dv dx = 1

Density: %(t, x) =

Z

⌦v

f(t, x, v) dv

No collision: the value of the particle distribution is constant along the 
characteristics in the phase space.

f(t, x, v) : ⌦ ! R+

⌦ = ⌦x ⇥ ⌦v ⇥ R+Domain: 

The unknown is the distribution of particles in the phase space (position and 
velocity), as function of time.

Kinetic Theory:
The purpose of Kinetic Theory is the description of dilute particle gases at an 
intermediate scale between the microscopic scale and the hydrodynamic scale*

* J. Dolbeault, An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation, Discrete and 
continuous dynamical systems, Volume 8, Number 2, 2002. 
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Vlasov-Poisson: mean-field approximation of electrically charged particles 
(electrons in this work), with no collisions, in the electro-static approximation

@tf + v ·rxf + a ·rvf = 0

a(t, x) = �rxU(t, x)

�U = 1� %(t, x)

f(0, x, v) = f0(x, v)

Theorem:*
If f0 2 L1(R3 ⇥ R3)⇥ L1(R3 ⇥ R3) satisfies the following condition:

Z

R3⇥R3

|v|mf0(x, v) dx dv < +1 for some m > 3,

then, there exists a global strong non-negative solution f to the Vlasov-Poisson
system so that

f 2 C(R+;L1(R3 ⇥ R3)) \ L1(R+ ⇥ R3 ⇥ R3).

* P.L.Lions, B.Perthame,Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system., Inventiones mathematicae 
(1991), Volume: 105, Issue: 2, page 415-430.

The Vlasov-Poisson system
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The Vlasov-Poisson system

Numerical Methods:
Particle in Cell: stochastic particle methods (subject to statistical noise)

Semi-lagrangian methods and Discontinuous Galerkin (few 3D-3D)

Full Eulerian (few 3D-3D)

Tensor Methods:
Semi-lagrangian method and Tensor-Train format*

* K. Kormann, A semi-lagrangian Vlasov solver in tensor train format, SIAM Journal on 
Scientic Computing, 37(4):B613-B632, 2015.

Main goal:
Full-Eulerian approach taking generic geometries in x (and possibly v) into account

Parsimonious discretisation
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For any functions r : ⌦x ! R and s : ⌦v ! R, we use the notation

r ⌦ s :

⇢
⌦x ⇥ ⌦v ! R
(x, v) 7! r(x)s(v).

The Method

For any linear operator A acting on real valued functions defined over ⌦x,
and for any B acting on real valued functions defined over ⌦v

(A⌦B)(r ⌦ s) = (Ar)⌦ (Bs), for all r : ⌦x ! R, s : ⌦v ! R.

Notation:

Tensor = separate discretisation for x and v

n is the tensor rankg(x, v) =
nX

k=1

rk(x)sk(v)
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The Method

Two main points:

Respect the Hamiltonian nature of the Vlasov-Poisson system

Use tensor methods to build a parsimonious discretisation starting from 
arbitrary a priori chosen separate discretisations for x and v

H =

Z

⌦x

Z

⌦v

1

2
|v|2f(t, x, v) dxdv +

Z

x2⌦x

%(t, x)U(t, x) dx.

{a, b} := rxarvb�rvarxb

h =
1

2
|v|2 + U

Poisson bracket 

reduced Hamiltonian

@tf + {f, h} = 0
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The main idea:

f(t, x, v) ⇡
ntX

k=1

rk(x, t)sk(v, t)
/ t

/ t

The Method

At each time step, the solution is decomposed into a sum of pure product tensor functions

@tf + {f, h} = @tf +

 
dX

i=1

@xi ⌦ vi +
dX

i=1

ai(x, t)⌦ @vi

!
f = 0.

tensorised operator:

ntX

k=1

 
dX

i=1

@xirk ⌦ visk +
dX

i=1

ai(x, t)rk ⌦ @visk

!
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Second order in time symplectic integrator:

Let �t > 0, m 2 N⇤, tm := m�t, we denote:

f (m)(x, v) ⇡ f(tm, x, v)

Three step scheme:

Elementary step structure:

(I +�tP )f
i+1
3 = (I +�tQ)f

i
3

8
<

:

�
I + �t

2 a(m)(x) ·rv

�
f (m+1/3) =

�
I � �t

2 v ·rx

�
f (m),�

I + �t
2 v ·rx

�
f (m+2/3) = f (m+1/3),

f (m+1) =
�
I � �t

2 a(m+2/3)(x) ·rv

�
f (m+2/3),

The Method
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Elementary step:

Idea: fix point

�f := f
i+1
3 � f

i
3 ) (I +�tP )�f = g

�f (l+1) = g ��tP �f (l)

Fix point POD/PGD
Hypotheses and notation:

• Let Hx, Hv be two Hilbert spaces

• I = Ix ⌦ Iv, where Ix (Iv) bounded, self-adjoint coercive operator acting

on Hx (Hv)

• P =
PN

q=1 P
(q)
x ⌦ P

(q)
v , where P

(q)
x 2 L(Hx) and P

(q)
v 2 L(Hv)

• g 2 Hx ⌦Hv

The Method
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The algorithm:

1. initial guess: �f (0) = 0.

2. For l 2 N⇤, compute (rl, sl) 2 Hx ⇥Hv such that:

(rl, sl) = argmin
r,s

kg ��tP �f
(n�1) � Ir ⌦ skHx⇥Hv

3. Set: �f (l) = �f
(l�1) + rl ⌦ sl

Proposition (Ehrlacher, L. 2016):

Let  := max1qN kI�1
x

P (q)
x ⌦ I�1

v
P (q)
v kHx⇥Hv .

Then, the algorithm converges provided that:

3N�t < 1.

The Method
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Recompression step:

f
i
3 ⇡

nX

k=1

r̃k ⌦ s̃k

f̃
i+1
3 ⇡

nX

k=1

r̃k ⌦ s̃k +
n1X

k=1

rk ⌦ sk

f
i+1
3 = POD(f̃

i+1
3 , ⌘)

The Method

Modified PGD step: solved by Alternated Least Square

POD step, solved by QR+SVD 

Computational Complexity:

at iteration l = K of the fixed-point PGD: O((Nx +Nv)(n+K)(d+ 1))

recompression step: O(n3 + n2(Nx +Nv))
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Back to Vlasov-Poisson:

✓
I +

�t

2
a(m)(x) ·rv

◆
f (m+1/3) =

✓
I � �t

2
v ·rx

◆
f (m)

Solve by PGD/POD step:

✓
I +

�t

2
v ·rx

◆
f (m+2/3) = f (m+1/3)

Solve by PGD/POD step:

am+2/3(x)Compute:

f (m+1) =

✓
I � �t

2
a(m+2/3)(x) ·rv

◆
f (m+2/3)

Solve by PGD/POD step

am+1(x)Compute:

The Method
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Numerical Experiments

5. Numerical results

In this section some numerical experiments are presented, to assess the properties of
the method.

5.1. 1D-1D examples

First, two 1D-1D examples are considered, to validate the proposed approach. The
following quantities are monitored: the error in mass, momentum and energy conserva-
tion, and the error with respect to a reference solution. The L2 averaged in time relative
errors are defined as follows:

✏m :=
1

M tf

✓Z
tf

0

(m�m(0))2 dt

◆1/2

, (37)

✏p :=
1

P tf

✓Z
tf

0

(p� p(0))2 dt

◆1/2

, (38)

✏h :=
1

H(0) tf

✓Z
tf

0

(h� h(0))2) dt

◆1/2

, (39)

✏f :=
1

tf

 Z
tf

0

R
⌦(fref � f)2 dx dvR

⌦ f 2
ref

dx dv
dt

!1/2

, (40)

where tf is the final time of the simulation, M is the normalising mass factor, defined as
the mass of the initial condition M = m(0) =

R
⌦ f0 dx dv, P =

p
2MK is the momentum

reference value, where K =
R
⌦ f0

v
2

2 dx dv is the initial kinetic energy, and H(0) is the
Hamiltonian at initial time.

5.1.1. Landau Damping.

The first test proposed is a standard linear Landau damping in a 1D-1D configuration,
as proposed in [39]. The domain size is ⌦x = [0, 4⇡] and ⌦v = [�10, 10]. Periodic
(respectively homogeneous Dirichlet) boundary conditions are set on ⌦x (respectively
⌦v). The initial condition is given in analytical form as:

f(x, v; t = 0) = F (x)G(v), (41)

F (x) = 1 + � cos(kx), (42)

G(v) =
1p
2⇡

exp

✓
�v2

2

◆
, (43)

22

Landau Damping 1D:

⌦x = [0, 4⇡], ⌦v = [�10, 10]

Space discretisation: spectral collocation in x (Fourier), finite differences in v

k = 0.5, � = 0.01

Nx = Nv = [32, 64, 128]

�t ⇡ 6.25 10�4
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Figure 1: Linear Landau damping testcase (see section 5.1.1). Electrostatic energy as function of time for
di↵erent resolutions in the phase space. Dash line is the analytical expected decay for the electrostatic
energy.

where k = 0.5 is the wavenumber of the perturbation and the amplitude � = 0.01 set
the problem in a linear Landau damping regime (see [39, 35]). In such a configuration
the analytical decay rate for the electric amplitude is � ⇡ 0.153. For this test a mixed
discretization is set up: for the space, a spectral collocation method is used based on a
Fourier discretization, whereas for the velocity standard centered finite di↵erences are
used.

The numerical experiments are done by varying the space and velocity resolution,
the time step, and the tolerance on the residual. In Figure 1 the decay in electrostatic
energy is shown as a function of time for Nx = Nv = (32, 64, 128), until final time
T = 40 and compared to the theoretical decay. The time step is chosen here to be equal
to �t = 6.2510�4. The behavior in terms of decay and of Langmuir frequency is in
agreement with the results presented in the litterature.

We present here another set of results where the influence of the di↵erent discretiza-
tion parameters on the conservation of the di↵erent quantities mentioned above is stud-
ied. For the space and the velocity discretization, the following values are taken:
(Nx, Nv) = (32, 32), (64, 64), (128, 128), (256, 256). The final time is set to tf = 10.0 and

23

Numerical Experiments
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Figure 2: Evolution in time of the rank of the approximation of f .

G(v) =
1p
4⇡

exp

✓
�(v � v0)2

2

◆
+

1p
4⇡

exp

✓
�(v + v0)2

2

◆
, (46)

where v0 = 2.4 and � = 10�3. A mixed discretization is considered, namely a spectral
collocation method for the space and standard centered finite di↵erences in velocity. The
contour plot of the reference solution at final time is shown in Figure 3. The conserva-
tion properties and the errors with respect to a reference simulation are investigated by
varying the phase space discretization as well as time step and the residual tolerance.
The results are very similar to the ones obtained for the linear Landau damping testcase.
For the sake of brevity, the conservation error properties are not reported. The errors
with respect to a reference simulation (Nx = 256, Nv = 512, Nt = 8 · 103, ✏ = 10�7)
are computed by varying the discretization of the phase space and the time step. In
particular, Nx ranges in [16, 32, 64, 128], Nv = 2Nx and Nt = [103, 2 · 103, 4 · 103]. The
tolerance on the residual is varied and the errors when considering ✏ = 10�6 are shown
in Figure 3. A second order convergence rate is retrieved for the space discretization, at
fixed time step. Whereas the error is relatively insensitive to the time step when a coarse
discretization is considered, a definite dependence is seen for the finest grid resolution.
This is due to the fact that, on the coarse grids, the discretization error is dominated by
the space discretization error.

27

Numerical Experiments
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Two stream instability 1D:

Numerical Experiments
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Figure 3: Two stream instability testcase (section 5.1.2): a) Contours of the reference solution (black
for the lowest value) at final time and b) Errors with respect to a reference simulation as function of
the phase space discretization, for di↵erent time steps.

28

Numerical Experiments
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Figure 7: Evolution of the rank of the approximate solution for the 3D-3D Landau damping test case
as a function of time.

Figure 8: Fluctuations of density 1 � ⇢(t, x) for the 3D-3D Landau damping test case at times t =
0, 0.33, 0.67, 1.0 from left to right.

32

Figure 9: Electric field E(t, x) for the 3D-3D Landau damping test case at times t = 0, 0.33, 0.67, 1.0
from left to right.

Figure 10: Evolution of the rank of the approximate solution for the 3D-3D two-stream test case as a
function of time.

33

1� %

�rxU

Landau Damping 3D:
Nx = Nv = 643 N ⇡ 6.9 1010

c = N/(max
t

nt(Nx +Nv)) ⇡ 1100

Numerical Experiments
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Hierarchical sub-tensors

The rank increase (too much?):

Idea:
On smaller sub-domains the solution can be represented by a small rank 
tensor, even if globally it cannot

Amiens 2019

The solution cannot be well represented globally by tensor approximation

Subdivide the domain, build a local tensor approximation

Figure 2: Evolution in time of the rank of the approximation of f .

G(v) =
1p
4⇡

exp

✓
�(v � v0)2

2

◆
+

1p
4⇡

exp

✓
�(v + v0)2

2

◆
, (46)

where v0 = 2.4 and � = 10�3. A mixed discretization is considered, namely a spectral
collocation method for the space and standard centered finite di↵erences in velocity. The
contour plot of the reference solution at final time is shown in Figure 3. The conserva-
tion properties and the errors with respect to a reference simulation are investigated by
varying the phase space discretization as well as time step and the residual tolerance.
The results are very similar to the ones obtained for the linear Landau damping testcase.
For the sake of brevity, the conservation error properties are not reported. The errors
with respect to a reference simulation (Nx = 256, Nv = 512, Nt = 8 · 103, ✏ = 10�7)
are computed by varying the discretization of the phase space and the time step. In
particular, Nx ranges in [16, 32, 64, 128], Nv = 2Nx and Nt = [103, 2 · 103, 4 · 103]. The
tolerance on the residual is varied and the errors when considering ✏ = 10�6 are shown
in Figure 3. A second order convergence rate is retrieved for the space discretization, at
fixed time step. Whereas the error is relatively insensitive to the time step when a coarse
discretization is considered, a definite dependence is seen for the finest grid resolution.
This is due to the fact that, on the coarse grids, the discretization error is dominated by
the space discretization error.
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Hierarchical sub-tensors
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2.1 Greedy step analysis.

The heuristic of the proposed approach is the following: it is not true, in general, that
a function belonging to the unit ball of W k,p can be represented in a parsimonious way
in a tensor format (by exploiting separation of variable). However, it is true that it can
on a small subset of a domain, or, otherwise stated, there exist a local e↵ective tensor
approximation. The following proof aims at making the above heuristics on the tensor
approximation of functions precise, by providing a su�cient condition on which the above
statement is true.

Notation.

Let Q ⇢ R
d be a finite measure hypercube (isomorphic to [0, 1]d), whose measure is

denoted by µ(Q). Let k 2 N⇤, p � 1 and W
k,p(Q) denote the standard Sobolev spaces. In

the following we consider, without loss of generality kukWk,p  1, that is, the function to
be approximated belongs to the unit ball of a standard Sobolev space. Let us consider a
congruent partition of the hypercube in 2dN sub-cubes Qi. This consists in a subdivision
such that Q = [2Nd

i=1Qi and in which all the sub-cubes are disjoint (µ(Qi \ Qj) = 0). A
piecewise polynomial approximation in each of the sub-domains is introduced. Let ↵ be
a d multi-index, with the usual notation |↵| =

Pd
i=1 ↵i, the monomial x↵ = x

↵1
1 · . . . · x↵d

d ,
and ↵! =

Qd
i=1 ↵i. Let the weak derivative of order ↵ being denoted by D

(↵), a projector
is defined, based on the Taylor kernel:

P
(k)
i u =

X

|↵|<k

Z

Qi

(x� y)↵

↵!
D

(↵)
u(y) dy. (1)

The projector P
(k)
i defines a polynomial approximation of u of rank k � 1 on the sub-

domain Qi.
The following proof is an adaptation of a proof by Edmunds (1989) deriving entropy

numbers asymptothics of the unit ball of Sobolev spaces.

1. Proposition: Let the domain be Q 2 Rd and the function to be approximated be u 2
W

k,p(Q), with kukWk,p(Q)  1. Let 1  p  q  1 and � = k
d � 1

p + 1
q > 0. Then, let

" > 0, there exist a congruent partition in 2dN sub-domains such that a piece-wise finite
rank (R  (k�1+d)!

(k�1)!d! ) tensor approximation of u achieves:

ku�
2dNX

j=1

TjkLq(Q)  ". (2)

Proof. Let us introduce the polynomial approximation in each of the sub-domains; the
error is such that:

ku� P
k
i ukLq(Qi)  Cµ(Qi)

�kukWk,p(Qi), (3)

2

When a local sub-tensor partition is effective?

A fact:

If the embedding is compact, there exist a partition such that an error on 
the piece-wise tensor approximation can be guaranteed 



Hierarchical sub-tensors
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The method:

Sub-divide the tensor into sub-tensors 

Greedy algorithm to distribute the error of the approximation (HOSVD)

Optimise the partition to minimise the storage



Hierarchical sub-tensors
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Methods characteristics:

Well adapted to moderate dimension tensors (partition is subjected to 
curse of dimensionality)

It is easily parallelisable (!), contrary to classical HOSVD, better suited 
for large number of degrees of freedom

The error is distributed automatically and guaranteed throughout 
the whole approximation

Memory gain is significant with respect to classical HOSVD format for a 
wide class of functions of interest



Hierarchical sub-tensors
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3 Numerical experiments.

In this section some numerical experiments are proposed to assess the properties of the
method. Three di↵erent tests are presented: the first and the second example are poten-
tials whose expression is known in analytic form, the Coulomb and the Gibbs potential,
for which we will present tests in d = 2, 3. These are two example of multi-variate func-
tions that can hardly be represented in separated form. The last test case is a perspective
on the use of the proposed method to compress solutions of high-dimensional Partial
Di↵erential Equation: a Vlasov-Poisson solution is presented.

For all the figures presented below, the errors plotted are defined as:

ei =

✓Z

Qi

(u⇤ � u)2 dx

◆1/2

, (12)

ei =
ei

µ(Qi)
, (13)

so that the error plotted in a sub-domain is constant over the sub-domain and it represents
the total L2(Qi) error achieved by the tensor approximation. When we plot the error
relative to the volume (denoted by Rel. error in the figures for the d = 3 test cases) we
show the quantity ei which is the error in the sub-domain renormalised with the volume
of the sub-domain.

3.1 Coulomb potential.

The Coulomb potential is a function V : Rd ! R+ which has the following expression:

V (x1, . . . , xd) =
X

1i<jd

1

|xi � xj|
. (14)

This can be interpreted, from a physical standpoint, as the electrostatic potential gener-
ated by a number of fix charges.

3.1.1 2D cases.

The tests on a 2D Coulomb potential are presented.
The results in terms of memory needed in order to store the potential are presented

in Table 1, for di↵erent values of the accuracy " and of tree depth `. The first set of
tests was performed with a discretisation of the Coulomb potential with Ni = 28, i = 1, 2
degrees of freedom per direction. The total storage (denoted by Full in Table1) is 216

doubles. The Coulomb potential is a function for which the classical HOSVD algorithm
(that reduces to classical SVD for d = 2) does not make it possible to have a storage
smaller than the full tensor. On the contrary, the proposed strategy is quite e↵ective,

5

Coulomb potential:

(a) (b) (c) (d)

Figure 2: Coulomb potential, section 3.1: (a) the tensor entries, in red the largest entries;
(b) the small size subtensors, (c) and (d) the mid size and the larger size subtensors. The
largest sub-tensors are in the complement of the cube.

as it can be seen in the last two columns of the table. As expected, when the required
accuracy is increased, the memory needed increases too, at constant tree depth. When
the tree depth is increased, the compression rate is improved, and this is related to the
fact that the representation adapts better to the function at hand.

Another test is performed (reported in the last line of the table), with an error thresh-
old of " = 10�5 and a tree depth of ` = 7. The number of degrees of freedom per direction
is Ni = 211, i = 1, 2. The total storage is henceforth of 222 doubles. The compression
achieved by the hierarchical method is of about 5% of the total storage, whereas the
classical HOSVD is at 100%. The results for this test are represented in Fig.3.1.1. At
the left, the distribution of the errors after the greedy phase, in which all the subtensors
are of equal size. At the center and on the left, the error after the optimisation of the
subtensors. We can see that the total errors are smaller in the small sub-domains. If we
look at the errors renormalised with respect to the sub-tensor size, we can see that the
error is still higher where the function is more di�cult to be represented well in separated
form up to a threshold of ", but in general we can state that the distribution of the renor-
malised errors is more uniform. This is also reflected in the ranks of the approximation
with respect to the total number of elements inside the sub-tensor: after the optimisation
it tends to be more uniform (and as low as possible, hence optimising the storage).

3.1.2 3D cases.

Some tests in d = 3 are presented.
The resolution of the tensor considered is Ni = 28, i = 1, 2, 3 degrees of freedom per

direction. The maximal tree depth is chosen to be ` = 5 that corresponds to subdivide the
tensor into 215 sub-tensors. As for the case d = 2 presented above, the classical HOSVD
cannot achieve a compression for such a function. After the greedy algorithm in the first
phase, the compression rate is of about 18% and after optimisation, the memory required

7

(a) (b) (c)

Figure 3: Coulomb 3D case, section 3.1:

to guarantee " = 10�5 is ⇠ 7% of the full tensor storage. In Fig.3.1.2.a) the tensor entries
are represented. In the same figure, the sub-tensors of small, medium and large size are
represented in Fig.3.1.2.b-c-d) respectively. As it can be seen, the sub-tensors size chosen
automatically by the method follows, in some sense, the tensor entries structure. The
smaller in size sub-tensors are located along the principal diagonal of the tensor, and
the size is increased as we moved away from the diagonals. The errors distribution is
represented in Fig.3.1.2. The observed behavoiur is the same commnted for the d = 2
test case presented above.

3.2 Gibbs potential.

The Gibbs potential is a function G : Rd ! R+ that has the following expression:

G(x1, . . . , xd) = exp(��V (x1, . . . , xd)), (15)

V (x1, . . . , xd) =
X

1i<jd

Vij(|xi � xj|), (16)

Vij(r) =
aij

r6
� bij

r12
, 81  i < j  d. (17)

3.2.1 2D cases.

The tests detailed in the present section are performed in the following 2D configuration:
let ⌦ = [�2, 2]2, for nitrogen and oxygen atoms.

The results of the tests are reported in Table 2, for di↵erent values of the accuracy
and tree depth. The observed trend is similar to the one previously commented for the
2D Coulomb test case. Concerning the HOSVD, no gain in memory was possible with

8



Hierarchical sub-tensors
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(a) (b) (c)

Figure 6: Gibbs 3D case, section 3.2:

(a) (b) (c) (d)

Figure 7: Vlasov-Poisson solution, section 3.3: (a) the tensor entries, in red the largest en-
tries; (b) the small size subtensors, (c) and (d) the mid size and the larger size subtensors.
The largest sub-tensors are in the complement of the cube.

high-dimensional problems for which the present approach could be of interest in terms
of compression. Let the domain be ⌦ = ⌦x ⇥ ⌦v ⇥ [0, T ], left f(x, v, t) : ⌦ ! R+ be the
solution, the system of equations reads:

@tf + v ·rxf + E ·rvf = 0, (18)

E = �r', (19)

��' = 1�
Z

⌦v

f dv. (20)

Further details on the formulation can be found in [CITE].
In Figure 3.3.a) the solution is represented, for a testcase which is called 1D-1D two-

stream instability ([CITE]). For this ⌦x = [0, 2⇡], ⌦v = [�10, 10] and t 2 [0, 36]. The
number of degrees of freedom is Nx = 512, Nv = 256, Nt = 160. The compressed solution
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(a) (b) (c)

Figure 8: Vlasov-Poisson case, section 3.3:

obtained by the proposed method is about 4% of the full storage for a tree with ` = 3
levels and an accuracy of " = 10�3. The classical HOSVD approach has been applied to
the same solution, with the same accuracy criterion, leading to no significant compression.
As for the other tests presented, the method follows the structure of the solution in order
to adapt the sub-tensor sizes (the sub-tensor splitting can be seen in Figure 3.3). This
has the e↵ect of redistributing the errors and hence to achieve a better compression rate,
as it can be appreciated in Figure 3.3.

4 Conclusion and perspectives.
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Vlasov Poisson: double stream instability

Compression factor in phase-space time: 250



Conclusions

Tensor method for the Vlasov-Poisson system:
Build a discretisation starting from a priori chosen separate discretisations in x and v

The number of terms is adapted dynamically, depending on a chosen error threshold

At each sub-step solve only linear problems in the separate spaces

For short time simulations it allows for a significant memory compression and speed-up

Drawbacks:

The rank increases with time: the compression rate decreases
Simulations are still long in realistic 3D-3D settings
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Perspectives

Parallelised Hierarchical local approximation:
Improve the compression via a better function adapted representation

Error can be guaranteed and distributed

Solve in this compress format

Solve linear system in this adaptive format

Boltzmann:
Collision term might be beneficial for the proposed approach, if it drives the dynamics 
towards a tensorised equilibrium solution. (in preparation)
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Thank you!
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