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1. Introduction

In dynamic networks, the topology of the nodes in
a network or links connecting these nodes changes
with time. This can be due to mobility, link failure, or
nodes failure. We are interested in this paper to study
consensus on dynamic networks. Most of the work
on consensus in dynamic network settings consider
fixed number of nodes that are trying to reach agree-
ment in the presence of either mobility or non-robust
links (so only the links are dynamic) [1]. Average con-
sensus on these networks is modeled following a ran-
dom adjacency matrix A™*™ (k) where n is the num-
ber of nodes and is fixed while the elements of this
matrix are random (being for example i.i.d. at every
iteration k). The study of consensus on that model is
reduced to studying the convergence of the backward
product of random matrices. Some papers give suffi-
cient conditions on the weight matrices at every time
iteration that guarantee convergence, others use coef-
ficient of ergodicity as a tool to show the convergence
of their system to consensus [2]. However, little study
has been made on networks with dynamic number of
nodes. In the latter case, the dimensions of the adja-
cency (and weight) matrices can be unbounded, and
thus the traditional tools for studying the consensus
are not applicable. We refer in this report to this type
of networks : nodes arrive and leave as in a queuing
system. We would like to study the effect of averag-
ing in these networks, and to see if the nodes could
actually reach consensus.
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FIGURE 1 — The network model.
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2. Model

Networks with dynamic nodes are characterized by
nodes’ arrival and nodes’ departure (see Fig. 1). Each
node arrives with a random value Xy (where k is
the number of arrival and each node is labeled by
its arrival number). We suppose that there is initially
a node having a label 0 in the system that does not
leave (it arrives at time t = 0 and does not depart).
Let Xo, X1,X2,... be pairwise independent random
variables following some distribution. Let Ay be the
arrival time of node k and Dy its departure time. At
any instance t, nodes within the system are connected
to each other by some network topology. Let V(t) be
the set of all nodes in the system at time instant t, i.e.,
V(t) = {k | Ax <t < Dy}. Let Yi(t) be the value of
node k that changes with time depending on its his-
tory of connection with other nodes, for example it
should be clear that Yy (t) has a constant value before
arrival (Yx(t) = Xy for t < Ay) and after departure
(Yx(t) = Yi(Dx) for t > Dy) but this value changes
during the time it spends in the system because of in-
teraction with other nodes. The nodes perform a con-
tinuous time averaging :

X(t) = —Lix(t), )
where x(t) is the state vector of the nodes present in
the system at time t, and x; (t) = Y, (3)(t) where y(i) is
the arrival number of the i-th oldest node in the sys-
tem (notice that x;(t) = Yo(t) is always true for the
node labeled 0 because it is the oldest node in system
and does not depart). L; is the Laplacian of the graph
at time t, and x(t) = a’é(tt). We call this model a con-
sensus queue due to its similarity to queuing systems.
If the inter-arrival and inter-leave times are exponen-
tially distributed random variables with a FIFO dis-
cipline (the nodes first to come are the first to leave
except for node 0), then the system is M/M/1 con-
sensus queue with arrival rate A, and departure rate
Ad.

The Laplacian of the graph L; is used to give a gen-
eral model for different graph topologies. However,
this work is just preliminary and we will give some
simplifications in the next section : 1) we only con-
sider two graph topologies, the complete graph and
the tree, 2) the averaging is faster than the dynamics
of the queue (i.e., equation (1) converges before the
arrival or the departure of a new node).

The model described here is interesting because it
can be applied to different and diverse applications.
Queuing consensus can be for example a model for
human interactions and their behavior. Consider a
system where people arrive at an open market and

products’ prices are not fixed. Each customer has
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an initial estimation of the price of the product that
varies depending on the interaction process with
other customers in the system. You can also consider
this model as a representative of a wireless sensor
network where sensors monitor some environmen-
tal measurement (as temperature or pressure) where
nodes can fail according to a Poisson process and new
nodes are added to the network. We are interested
then by the average in the system, mainly by :
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where N(t) = |V(t)| is the number of nodes that are
present in the system at time t and x;(t) are their es-
timates. We note that Z(t) is not a continuous process
in general because with every arrival (or departure)
with an estimate Xy (or Yy) different from Z(t), the
process jumps to a different value.

3. Simple Network Topologies

There are two sources of randomness in this model,
the first one is the input estimate X that follows some
distribution, and the other one is the queuing system
with random arrivals and departures. In the follow-
ing sections, we will characterize the average in the
system and the output process by considering several
simplifications :

1. Complete Graph : the network is a full mesh
network (all nodes in the system are con-
nected to each others) and once a node en-
ters a system, all nodes will have the average
of nodes presented (instantaneous averaging),
ie., xi(t) = Z(t) for all 1 in the system.

. Directed Tree : nodes arriving can only connect
to one node chosen uniformly at random in the
system, and their estimate changes only once
till they leave the network depending on the
chosen node’s estimate and it’s distance from
the root.

3.1. Complete Graph

Let Zy be the value of Z(t) just after the k-th arrival
and before the k+ 1-th arrival. Then Zy can be written
as a weighted average of the nodes in the network,
ie., Zy = Zl‘:o wiXi, where w; is the weight given
to the value of node i and it is a random variable de-
pending on the stochastic arrivals and departures. It
is important to study these weights to see how the
system preserves the history of old values. To do this
we take two extreme cases. The first case of no depar-
tures (if Ag = 0), then we have
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The second case of very fast departures (Aq >> Ay),
then we suppose each node that arrives, averages
with node 0 and then leaves the system, so

o

The results are interesting as they show that if the sys-
tem’s departure rate is fast, then the weights for old
values decrease exponentially, but if the departure is
slow then the weights for old values decrease linearly
in k. For future work, we would like to characterize
the decrease in the average weight of the history as
function of the performance parameter of the queue
(as function of p = Aq/Ag).
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3.2. Directed Tree

For this topology, we assume that there are no de-
partures from the system. Each node arrives, con-
nects uniformly at random to one node (we call it its
parent) in the network. Let L be the distance from a
newly connected node to the root (node 0). We sup-
pose that each node 1 arrives at level L, connects to its
parent j, and then averages as follows :

L7_]Yj(t) fort > A;.

Yi(t) = =Xi + T

L
Notice that Y;(t) = % > sep Xs isaconstant fort > A;
where P is the set of nodes on the path from the root
to i. Since L converges to logn in probability as n —
oo [3], we conclude that if X7, X5, ... are i.i.d random
variables of mean y, then the value Y;(t) fort > A;
converges in probability to pas i — oo.
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