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Attribute-value rule learning

(C ) (A1) (A2) (A3) (A4) (A5) (A6)
Price Area Rooms Energy Town District Exposure

1 low-priced 70 2 D Toulouse Minimes
2 low-priced 75 4 D Toulouse Rangueil
3 expensive 65 3 Toulouse Downtown
4 low-priced 32 2 D Toulouse SE
5 mid-priced 65 2 D Rennes SO
6 expensive 100 5 C Rennes Downtown
7 low-priced 40 2 D Betton S

I Task: induce rules to predict the value of the class
attribute (C )

I Rules extracted by Algorithm CN2

πCN2
1 : A5 = Downtown⇒ C = expensive

πCN2
2 : A2 < 2.50 ∧ A4 = Toulouse⇒ C = low-priced

πCN2
3 : A1 > 36.00 ∧ A3 = D ⇒ C = low-priced
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Interpretability of rules and rulesets

I The logical structure of a rule can be easily interpreted by
users

IF conditions THEN class-label

I Rule learning algorithms generate rules according to
implicit or explicit principles1

but ..
I are the generated rules the interpretable ones?
I would it be possible to have di�erent rulesets?
I why a ruleset would be better than another one from the

interpretability point of view?

⇒ We need ways to analyze the interpretability of the
outputs of rule learning algorithms

1principles mainly based on statistical properties!
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Analyzing the interpretability of rules

Analyzing the interpretativeness of ruleset

I Objective criteria on ruleset syntax [CZV13, BS15]
I size of the rule (number of attributes)
I size of the ruleset

I Intuitiveness of rules through the e�ects of cognitive
biases [KBF18]

⇒ Our approach formalizes rule learning and formalizes
some expected properties on rules to shed light on
properties of some extracted ruleset
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Rule learning at a glance

Rule learning is formalized by two main functions

I φ: selects possible subsets of data

I f : generalizes examples as a rule (LearnOneRule process
[Mit82])

(C) (A1) (A2) (A3) (A4) (A5) (A6)
Price Area #Rooms Energy Town District Exposure

low-priced 70 2 D Toulouse Minimes
low-priced 75 4 D Toulouse Rangueil
expensive 65 3 Toulouse Downtown
low-priced 32 2 D Toulouse SE
mid-priced 65 2 D Rennes SW
expensive 100 5 C Rennes Downtown
low-priced 40 2 D Betton S
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⇒ We focus on the generalisation of examples as rule
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Toward the notion of admissibility

(C ) (A1)
Price Area

1 low-priced 70
2 low-priced 75
4 low-priced 32
7 low-priced 40

I Rote learning of a rule

A1 = {70, 75, 32, 40} ⇒ C = low-priced

I Most generalizing rule

A1 = [32 : 75]⇒ C = low-priced

I Would the following rule be better?
A1 = [32 : 40] ∪ [70 : 75]⇒ C = low-priced

⇒ this is the question of admissibility!

The notion of admissibility has to capture an intuitive notion
of generalization

I Admissible rules are rules less likely to be counter-intuitive
I Admissibility is an elementary notion for interpretability
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Eliciting a rule (f function)

(A0) (A1) (A2)

Price Area Rooms
1 low-priced 70 2

2 low-priced 75 4

4 low-priced 32 2

7 low-priced 40 2

S0 = {low-priced}

S1 = {32, 40, 70, 75}

S2 = {2, 4}

Ŝ0 Ŝ1 Ŝ2

f f

I For every attribute Ai , Si is the
set of values of Ai in items of S

I Each superset of Si is,
theoretically speaking, a
generalization of Si

I The generalisation process thus
consists in selecting one of these
supersets:

f choice function that is given

as input a collection of

supersets of Si and picks one

We are looking for an appropriate ·̂ for (�) i.e.

A1(x) ∈ Ŝ1 ∧ · · · ∧ An(x) ∈ Ŝn → C (x) ∈ Ŝ0 (�)

Generalization of Si : Ŝi = f ({Y | Si ⊆ Y ⊆ RngAi})
8 / 13



Notion of admissibility: propositions

Generalization of Si : Ŝi = f ({Y | Si ⊆ Y ⊆ RngAi})

What collection X = {Ŝi | Si ⊆ RngAi} would do?

(i) RngAi ∈ X
(ii) if X and Y are in X then so X ∩ Y .

I X is a closure system upon RngAi .
I ·̂ is an operation enjoying weaker properties than closure

operators; alternatives looked at:
I pre-closure operator
I capping operator

What choice function(s) can in practice capture these
expected algebraic properties?
I Proposal for some classes of choice functions generating

speci�c types of operators
I Concrete examples of such functions for numerical rules
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Class of choice functions satisfying pre-closure

Theorem. Given a set Z , let f : 22
Z → 2Z be a function st

for every upward closed X ⊆ 2Z and every Y ⊆ 2Z :

1. f (2Z ) = ∅
2. f (X ) ∈ X
3. f (X ∩ Y) = f (X ) ∪ f (Y)

whenever
⋃
min(X ∩ Y) =

⋃
minX ∪

⋃
minY

Then, ·̂ : 2Z → 2Z as de�ned by

X̂
def
= f ({Y | X ⊆ Y ⊆ Z})

is a pre-closure operator upon Z .

Intuition: Z is RngAi

X (and Y, too) is a collection of intervals over RngAi

moreover, X is a collection containing all super-intervals

of an interval belonging to the collection
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Class of choice functions satisfying pre-closure
Theorem. Given a set Z , let f : 22

Z → 2Z be a function st
for every upward closed X ⊆ 2Z and every Y ⊆ 2Z :

1. f (2Z ) = ∅
2. f (X ) ∈ X
3. f (X ∩ Y) = f (X ) ∪ f (Y)

whenever
⋃
min(X ∩ Y) =

⋃
minX ∪

⋃
minY

Then, ·̂ : 2Z → 2Z as de�ned by

X̂
def
= f ({Y | X ⊆ Y ⊆ Z})

is a pre-closure operator upon Z .

Numerical attributes: principle of single point (u) interpolation

Ai(x) ∈ [u − r : u + r ]→ C (x) = c .
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Example of framework usage

Dataset 1 Dataset 2

C A
1 A 70
2 A 75
3 B 32
4 B 40

C A
1 A 70
2 A 74
3 A 72
4 A 75
5 B 32
6 B 40

I CN2 chooses the boundary to be

the middle of the bounds in

between the two classes ⇒ same

rules in both cases

I CN2 is insensitive to examples

density

Is it good or is it bad to be sensitive to examples density?

→ it depends on the notion of admissibility!
I some admissible generalizations enjoying capping are

sensitive to examples density, in contrast to CN2

generalizations!
I CN2 generalizations form an admissible class of

generalizations enjoying cumulation !
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Conclusion

I The logical structure of rules makes them easy to read
but ...

I The interpretability of rules learned from examples
requires, in particular, to take care of the way examples
are generalized

I Qualifying the interpretable nature of rule learning
outputs is challenging

I Our work contributes by giving a way to do such analysis
I A proposal of a general framework for rule learning
I A topological study of admissible generalisations of

examples

I Perspectives: study the characteristics of extracted
rulesets (set of rules)
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Weakening closure operators

I List of Kuratowski's axioms [Kur14] (closure system):

∅̂ = ∅
S ⊆ Ŝ ⊆ RngAî̂
S = Ŝ [to be dropped for pre-closure]

Ŝ ∪ S ′ = Ŝ ∪ Ŝ ′

I Actually, we downgrade Kuratowski's axioms as follows

Ŝ ⊆ Ŝ ′ whenever S ⊆ S ′ (closure)

Ŝ = Ŝ ′ whenever S ⊆ S ′ ⊆ Ŝ (cumulation)

Ŝ ∪ S ′ ⊆ Ŝ whenever S ′ ⊆ Ŝ (capping)

Lemma: Kuratowksi ⇒ closure ⇒ cumulation ⇒ capping
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Class of choice functions satisfying capping

Theorem. Given a set Z , let f : 22
Z → 2Z be a function st

for every X ⊆ 2Z such that
⋂
X ∈ X and for every Y ⊆ 2Z

1. f (X ) ∈ X
2. if Y ⊆ X and ∃W ∈ Y , W ⊆ f (X ) then f (Y) ⊆ f (X )

Then, ·̂ : 2Z → 2Z as de�ned by

X̂
def
= f ({Y | X ⊆ Y ⊆ Z})

is a capping operator upon Z .

Intuition: Z is RngAi

X (and Y, too) is a collection of intervals over RngAi

moreover, X is a collection whose intersection

is itself a member of the collection
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Class of choice functions satisfying capping

Theorem. Given a set Z , let f : 22
Z → 2Z be a function st

for every X ⊆ 2Z such that
⋂
X ∈ X and for every Y ⊆ 2Z

1. f (X ) ∈ X
2. if Y ⊆ X and ∃W ∈ Y , W ⊆ f (X ) then f (Y) ⊆ f (X )

Then, ·̂ : 2Z → 2Z as de�ned by

X̂
def
= f ({Y | X ⊆ Y ⊆ Z})

is a capping operator upon Z .

Numerical attributes: principle of pairwise point interpolation
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Eliciting a rule

I S being a square is supposed to capture a rule π requires
that every item of S satis�es π

→ generalisation does not capture the statistical

representativeness of dataset, but only elicits a rule

generalizing all its items

(C) (A1) (A2) (A3) (A4) (A5) (A6)
Price Area #Rooms Energy Town District Exposure

low-priced 70 2 D Toulouse Minimes
low-priced 75 4 D Toulouse Rangueil
expensive 65 3 Toulouse Downtown
low-priced 32 2 D Toulouse SE
mid-priced 65 2 D Rennes SW
expensive 100 5 C Rennes Downtown
low-priced 40 2 D Betton S

A0 = 2 ∧ A4 = Toulouse⇒ C = low-priced

f

(C) (A1) (A2) (A3) (A4) (A5) (A6)
Price Area #Rooms Energy Town District Exposure

low-priced 70 2 D Toulouse Minimes
low-priced 75 4 D Toulouse Rangueil
expensive 65 3 Toulouse Downtown
low-priced 32 2 D Toulouse SE
mid-priced 65 2 D Rennes SW
expensive 100 5 C Rennes Downtown
low-priced 40 2 D Betton S

A0 ∈ [2, 4]⇒ C ∈ {low-priced, expensive}

f
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