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Attribute-value rule learning

~N O O EWw N

(C) (A1) | (A2) (A3) (As) (As) (As)
Price Area | Rooms | Energy Town District Exposure
low-priced 70 2 D Toulouse | Minimes
low-priced 75 4 D Toulouse | Rangueil
expensive 65 3 Toulouse | Downtown
low-priced 32 2 D Toulouse SE
mid-priced | 65 2 D Rennes SO
expensive | 100 5 C Rennes | Downtown
low-priced 40 2 D Betton S

» Task: induce rules to predict the value of the class

attribute (C)
» Rules extracted by Algorithm CN2

7r1CN2 D Ag =

Downtown = C = expensive

7T2CN2 : Ar < 2.50 A Ay = Toulouse = C = low-priced

$N2 . A; > 36.00 A A3 = D = C = low-priced
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Interpretability of rules and rulesets

» The logical structure of a rule can be easily interpreted by
users

IF conditions THEN class-label

» Rule learning algorithms generate rules according to
implicit or explicit principles!
but ..
> are the generated rules the interpretable ones?
» would it be possible to have different rulesets?
» why a ruleset would be better than another one from the
interpretability point of view?

= We need ways to analyze the interpretability of the
outputs of rule learning algorithms

Lprinciples mainly based on statistical properties!
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Analyzing the interpretability of rules

Analyzing the interpretativeness of ruleset

» Objective criteria on ruleset syntax [CZV13, BS15]
> size of the rule (number of attributes)
> size of the ruleset
» Intuitiveness of rules through the effects of cognitive
biases [KBF18]

= Our approach and formalizes
some expected properties on rules to shed light on
properties of some extracted ruleset
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Rule learning at a glance

Rule learning is formalized by two main functions

» ¢: selects possible subsets of data

» f: generalizes examples as a rule (LearnOneRule process

[Mit82])
‘ Q) [(A)] (A2) [ (As) [ (A4) (As) (As)
Price  |Area|#Rooms|Energy| Town District |Exposure

low-priced| 70 2 D Toulouse| Minimes
low-priced | 75 4 D | Toulouse | Rangueil

expensive | 65 3 Toulouse |Downtown
low-priced | 32 2 D Toulouse SE
mid-priced | 65 2 D Rennes SwW
expensive | 100 5 C Rennes |Downtown
low-priced | 40 2 D Betton S
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= We focus on the generalisation of examples as rule
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Toward the notion of admissibility

© (A
Price Area
1 | low-priced | 70
2 | low-priced | 75
4 | low-priced | 32
7 | low-priced | 40
Ay

» Rote learning of a rule
A; ={70,75,32,40} = C = low-priced

» Most generalizing rule
A; = [32:75] = C = low-priced

» Would the following rule be better?

= [32:40]U[70: 75] = C = low-priced

= this is the question of admissibility!

The notion of admissibility has to capture an intuitive notion
of generalization

» Admissible rules are rules less likely to be counter-intuitive
» Admissibility is an elementary notion for interpretability
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Eliciting a rule (f function)

G T T (A » For every attribute A;, S; is the
Price | Area | Rooms set of values of A; in items of S
1 | low-priced | 70 2 .
2 | low-priced | 75 4 » Each superset of §; is,
4 | low-priced | 32 2 a
7 | low-priced | 40 2 . ; !
generalization of §;
l l » The generalisation process thus

So = {low-priced} S2={2,4}  consists in selecting one of these

st1 — {32,40,70,75} Jf supersets: o
4 f that is given
So 51 52 as input a collection of
supersets of S; and picks one

We are looking for an appropriate = for (§) i.e.
Al(X) ESI A AAy(x) €S, — C(x) € S (8)

Generalization of S;: S, = f{Y|S CY CRngA;})
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Notion of admissibility: propositions
Generalization of §;: 5 = f({Y | 5, C Y C RngA})

What collection X = {5; | 5; C Rng A;} would do?
(I) Rng A e X
(i) if X and Y are in X thenso X NY.

» X is a closure system upon Rng A;.
» ~ is an operation enjoying weaker properties than closure
operators; alternatives looked at:
» pre-closure operator
» capping operator

What choice function(s) can in practice capture these
expected algebraic properties?
» Proposal for some classes of choice functions generating
specific types of operators
» Concrete examples of such functions for numerical rules
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Class of choice functions satisfying pre-closure

Theorem. Given a set Z, let f : 22° — 27 be a function st
for every upward closed X C 24 and every ) C 27:
1. f(24) =10
2. f(X)ex
3. fF(XNY)=Ff(X)UF)
whenever [ Jmin(X NY) =Jmin X UJmin)Y
Then, ~: 22 — 2% as defined by

XY rqy|xcvyczy

is a pre-closure operator upon Z.

Intuition: Z is Rng A;
X (and Y, too) is a collection of intervals over Rng A;
moreover, X is a collection containing all super-intervals

of an interval belonging to the collection
10 / 13



Class of choice functions satisfying pre-closure

Theorem. Given a set Z, let f : 22* 4 9Z be a function st
for every upward closed X C 24 and every ) C 27:

1. f(24) =10

2. f(X)ex

3. f(XNY)=FX)UF)

whenever [ Jmin(X NY) =Umin X UJmin)Y

Then, ~: 22 — 2Z as defined by

X¥ryy|xcvyczy

is a pre-closure operator upon Z.
Numerical attributes: principle of single point (u) interpolation

Ai(x )E[u—r u+r]— C(x)=c.
X >< ><><

J;{:

r
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Example of framework usage

Dataset 1 Dataset 2
» CN2 chooses the boundary to be
ClA the middle of the bounds in

CT A 1 [A 70 b h |
. FAT70 A etween the two classes = same
2| A |75 3| A T2 rules in both cases
3| B | 32 s | A| 75
« | B |40 : E 4313 » CN2 is insensitive to examples

density

Is it good or is it bad to be sensitive to examples density?
— it depends on the notion of admissibility!

» some admissible generalizations enjoying capping are
sensitive to examples density, in contrast to CN2
generalizations!

» CN2 generalizations form an admissible class of
generalizations enjoying cumulation!
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Conclusion

>

>

The logical structure of rules makes them easy to read
but ...

The interpretability of rules learned from examples
requires, in particular, to take care of the way examples
are generalized

Qualifying the interpretable nature of rule learning
outputs is challenging

Our work contributes by giving a way to do such analysis
> A proposal of a general framework for rule learning
> A topological study of admissible generalisations of
examples
Perspectives: study the characteristics of extracted
rulesets (set of rules)
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Weakening closure operators

» List of Kuratowski's axioms [Kurl4] (closure system):

h=0

SC S CRngA;

$=5 [to be dropped for pre-closure]
SusS' =5Us

» Actually, we downgrade Kuratowski's axioms as follows

5 C S whenever S C & (closure)

5 S’ whenever S C S C S (cumulation)

SUS C S whenever S'C S (capping)
Lemma: Kuratowksi = closure = cumulation = capping
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Class of choice functions satisfying capping

Theorem. Given a set Z, let f : 22° s 97 e 3 function st
for every X C 27 such that (\ X € X and for every Y C 24

1. f(X)eXx
2 ifY C X and IW €V, W C F(X) then F(V) C F(X)
Then, ~: 24 — 22 as defined by

O def

XEf{y|xcvyczy)

is a capping operator upon Z.

Intuition: Z is Rng A;
X (and Y, too) is a collection of intervals over Rng A;
moreover, X is a collection whose intersection
is itself a member of the collection
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Class of choice functions satisfying capping

Theorem. Given a set Z, let f : 22° — 2Z be a function st
for every X C 24 such that (X € X and for every ) C 2%

1 f(X)eX
2. ifYC X and3IW €Y, W C F(X) then (V) C F(X)
Then, ~: 24 — 22 as defined by

XY frqy|xcvycz)
Is a capping operator upon Z.

Numerical attributes: principle of pairwise point interpolation

X X X

>A
>A k‘ﬁ
X KX XK
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Eliciting a rule

» S being a square is supposed to capture a rule 7 requires
that every item of S satisfies 7

— generalisation does not capture the statistical
representativeness of dataset, but only elicits a rule

generalizing all its items

‘ © (A ) [ )] @) | (A | (A ‘ @ (A ) [ &) | G | (A | (B
Price |Area|#Rooms|Energy| Town District |Exposure Price Area|#Rooms|Energy| Town District |Exposure
low-priced| 70° 2 D Toulouse| Minimes low-priced | 70 2 D |Toulouse| Minimes
low-priced | 75 4 D Toulouse | Rangueil low-priced | 75 D |Toulouse| Rangueil
expensive | 65 3 Toulouse |Downtown expensive | 65 2 Toulouse|Downtown
low-priced| 32 2 D Toulouse SE low-priced | 32 2 D |Toulouse SE
mid-priced | 65 2 D Rennes SwW mid-priced | 65 2 D Rennes sw
expensive | 100 5 C Rennes |Downtown expensive | 100 5 C Rennes |Downtown
low-priced | 40 2 D Betton S low-priced | 40 2 D Betton S

|

Ao = 2 A Ay = Toulouse = C = low-priced

Ao € [2,4] = C € {low-priced, expensive}

16 / 13



	Introduction
	Formalizing rule learning
	Admissibility for generalization
	Usage example of the formalization
	Conclusion
	Bibliography
	Appendix

