Admissible generalizations of examples as rules

Philippe Besnard¹ — Thomas Guyet³ — Véronique Masson^{2,3}

¹ CNRS-IRIT ² Université Rennes-1 ³ IRISA/LACODAM

Presented by Sébastien Ferré (Université Rennes-1/SemLIS).

AIMLAI workshop @EGC - January 22nd, 2019

And now ...

Introduction

Formalizing rule learning

Admissibility for generalization

- Formalizing admissibility
- Classes of choice functions

Usage example of the formalization

Conclusion

Attribute-value rule learning

	(<i>C</i>)	(A_1)	(A_2)	(A ₃)	(A_4)	(A_5)	(A_6)
	Price	Area	Rooms	Energy	Town	District	Exposure
1	low-priced	70	2	D	Toulouse	Minimes	
2	low-priced	75	4	D	Toulouse	Rangueil	
3	expensive	65	3		Toulouse	Downtown	
4	low-priced	32	2	D	Toulouse		SE
5	mid-priced	65	2	D	Rennes		SO
6	expensive	100	5	C	Rennes	Downtown	
7	low-priced	40	2	D	Betton		S

- Task: induce rules to predict the value of the class attribute (C)
- Rules extracted by Algorithm CN2

$$\begin{array}{l} \pi_1^{CN2} : A_5 = {\sf Downtown} \Rightarrow C = {\sf expensive} \\ \pi_2^{CN2} : A_2 < 2.50 \land A_4 = {\sf Toulouse} \Rightarrow C = {\sf low-priced} \\ \pi_3^{CN2} : A_1 > 36.00 \land A_3 = D \Rightarrow C = {\sf low-priced} \end{array}$$

Interpretability of rules and rulesets

The logical structure of a rule can be easily interpreted by users

IF conditions THEN class-label

- Rule learning algorithms generate rules according to implicit or explicit principles¹ but ..
 - are the generated rules the *interpretable* ones?
 - would it be possible to have different rulesets?
 - why a ruleset would be better than another one from the interpretability point of view?
- ⇒ We need ways to analyze the interpretability of the outputs of rule learning algorithms

¹principles mainly based on statistical properties!

Analyzing the interpretability of rules

Analyzing the interpretativeness of ruleset

- Objective criteria on ruleset syntax [CZV13, BS15]
 - size of the rule (number of attributes)
 size of the ruleset
- Intuitiveness of rules through the effects of cognitive biases [KBF18]
- \Rightarrow Our approach formalizes rule learning and formalizes some expected properties on rules to shed light on properties of some extracted ruleset

Rule learning at a glance

Rule learning is formalized by two main functions

- ϕ : selects possible subsets of data
- ► f: generalizes examples as a rule (LearnOneRule process [Mit82]) $S \xrightarrow{f} \pi$

						/		φ	_{>} 5" -	$\longrightarrow \pi''$
	(C)	(A_1)	(A_2)	(A ₃)	(A ₄)	(A ₅)	(A ₆)			
	Price	Area	#Rooms	Energy	Town	District	Exposure			
	low-priced	70	2	D	Toulouse	Minimes				
1	low-priced	75	4	D -	Toulouse	Rangueil				
	expensive	65	3		Toulouse	Downtown				
	low-priced	32	2	D	Toulouse		SE			
	mid-priced	65	2	D -	Rennes		SW			
	expensive	100	5	C	Rennes	Downtown				
	low-priced	40	2	D	Betton		S	$\downarrow \phi$		
									* ~ ""	f ,,,,,
									- S‴ -	$\longrightarrow \pi^{\prime\prime\prime}$

 \Rightarrow We focus on the generalisation of examples as rule

Toward the notion of admissibility

	(<i>C</i>)	(A_1)
	Price	Area
1	low-priced	70
2	low-priced	75
4	low-priced	32
7	low-priced	40

• Rote learning of a rule $A_1 = \{70, 75, 32, 40\} \Rightarrow C =$ low-priced

→ Would the following rule be better? $A_1 = [32:40] \cup [70:75] \Rightarrow C =$ low-priced

 \Rightarrow this is the question of admissibility!

The notion of admissibility has to capture an intuitive notion of generalization

- > Admissible rules are rules less likely to be counter-intuitive
- Admissibility is an elementary notion for interpretability

Eliciting a rule (f function)

	(A ₀)	(A_1)	(A ₂)		
	Price	Area	Rooms		
1	low-priced	70	2		
2	low-priced	75	4		
4	low-priced	32	2		
7	low-priced	40	2		
$S_0 =$	$ \begin{cases} \text{ow-priced}\rangle \\ f \\ \widehat{S}_{0} \end{bmatrix} S_{1} = \{3\}$	$\left \begin{array}{c} \\ 2, 40, 7 \\ \downarrow \\ \widehat{S}_{1} \end{array} \right $	$S_2 = \begin{cases} \\ S_2 = \\ \\ 0,75 \end{cases} \downarrow$ \widehat{S}_2	2,4} f	
	\mathcal{I}_0	J_1	J_2		

- For every attribute A_i, S_i is the set of values of A_i in items of S
- Each superset of S_i is, theoretically speaking, a generalization of S_i
- The generalisation process thus consists in selecting one of these supersets:
 - f choice function that is given as input a collection of supersets of S_i and picks one

We are looking for an appropriate $\widehat{\cdot}$ for (§) i.e. $A_1(x) \in \widehat{S}_1 \wedge \dots \wedge A_n(x) \in \widehat{S}_n \to C(x) \in \widehat{S}_0$ (§) Generalization of $S_i : \widehat{S}_i = f(\{Y \mid S_i \subseteq Y \subseteq \operatorname{Rng} A_i\})$ Notion of admissibility: propositions

Generalization of S_i : $\widehat{S}_i = f(\{Y \mid S_i \subseteq Y \subseteq \operatorname{Rng} A_i\})$

What collection $\mathcal{X} = \{\widehat{S}_i \mid S_i \subseteq \operatorname{Rng} A_i\}$ would do?

- (i) $\operatorname{Rng} A_i \in \mathcal{X}$
- (ii) if X and Y are in \mathcal{X} then so $X \cap Y$.
 - \mathcal{X} is a closure system upon $\operatorname{Rng} A_i$.
 - is an operation enjoying weaker properties than closure operators; alternatives looked at:
 - pre-closure operator
 - capping operator

What choice function(s) can in practice capture these expected algebraic properties?

- Proposal for some classes of choice functions generating specific types of operators
- Concrete examples of such functions for numerical rules

Class of choice functions satisfying pre-closure

Theorem. Given a set Z, let $f : 2^{2^Z} \to 2^Z$ be a function st for every upward closed $\mathcal{X} \subseteq 2^Z$ and every $\mathcal{Y} \subseteq 2^Z$:

1.
$$f(2^{Z}) = \emptyset$$

2. $f(\mathcal{X}) \in \mathcal{X}$
3. $f(\mathcal{X} \cap \mathcal{Y}) = f(\mathcal{X}) \cup f(\mathcal{Y})$
whenever $\bigcup \min(\mathcal{X} \cap \mathcal{Y}) = \bigcup \min \mathcal{X} \cup \bigcup \min \mathcal{Y}$
Then, $\widehat{\cdot} : 2^{Z} \to 2^{Z}$ as defined by
 $\widehat{\mathcal{X}} \stackrel{\text{def}}{=} f(\{Y \mid X \subseteq Y \subseteq Z\})$

is a pre-closure operator upon Z.

Intuition: Z is $\operatorname{Rng} A_i$ \mathcal{X} (and \mathcal{Y} , too) is a collection of intervals over $\operatorname{Rng} A_i$ moreover, \mathcal{X} is a collection containing all super-intervals of an interval belonging to the collection

Class of choice functions satisfying pre-closure

Theorem. Given a set Z, let $f : 2^{2^Z} \to 2^Z$ be a function st for every upward closed $\mathcal{X} \subseteq 2^Z$ and every $\mathcal{Y} \subseteq 2^Z$:

1.
$$f(2^{Z}) = \emptyset$$

2. $f(\mathcal{X}) \in \mathcal{X}$
3. $f(\mathcal{X} \cap \mathcal{Y}) = f(\mathcal{X}) \cup f(\mathcal{Y})$
whenever $\bigcup \min(\mathcal{X} \cap \mathcal{Y}) = \bigcup \min \mathcal{X} \cup \bigcup \min \mathcal{Y}$
Then, $\widehat{\cdot} : 2^{Z} \to 2^{Z}$ as defined by
 $\widehat{\mathcal{X}} \stackrel{\text{def}}{=} f(\{Y \mid X \subseteq Y \subseteq Z\})$

is a pre-closure operator upon Z.

<u>Numerical attributes</u>: principle of single point (u) interpolation

$$A_i(x) \in [u - r : u + r] \rightarrow C(x) = c.$$

Example of framework usage

	Data	set 1	Dataset 2			
				С	A	
	С	A	1	Α	70	
1	Α	70	2	Α	74	
2	A	75	3	Α	72	
3	В	32	4	Α	75	
4	В	40	5	В	32	
			6	В	40	

- ► CN2 chooses the boundary to be the middle of the bounds in between the two classes ⇒ same rules in both cases
- CN2 is insensitive to examples density

Is it good or is it bad to be sensitive to examples density?

- $\rightarrow\,$ it depends on the notion of admissibility!
 - some admissible generalizations enjoying capping are sensitive to examples density, in contrast to CN2 generalizations!
 - CN2 generalizations form an admissible class of generalizations enjoying cumulation !

Conclusion

- The logical structure of rules makes them easy to read but ...
- The interpretability of rules learned from examples requires, in particular, to take care of the way examples are generalized
- Qualifying the interpretable nature of rule learning outputs is challenging
- Our work contributes by giving a way to do such analysis
 - A proposal of a general framework for rule learning
 - A topological study of *admissible generalisations* of examples
- Perspectives: study the characteristics of extracted rulesets (set of rules)

Bibliography

- Fernando Benites and Elena Sapozhnikova, *Hierarchical interestingness measures* for association rules with generalization on both antecedent and consequent sides, Pattern Recognition Letters **65** (2015), 197–203.

Alberto Cano, Amelia Zafra, and Sebastián Ventura, An interpretable classification rule mining algorithm, Information Sciences **240** (2013), 1–20.

Tomás Kliegr, Stepán Bahník, and Johannes Fürnkranz, A review of possible effects of cognitive biases on interpretation of rule-based machine learning models, CoRR **abs/1804.02969** (2018).

Kazimierz Kuratowski, Topology, vol. 1, Elsevier, 2014.

Tom M Mitchell, *Generalization as search*, Artificial Intelligence **18** (1982), 203–226.

Weakening closure operators

List of Kuratowski's axioms [Kur14] (closure system):

$$\widehat{\emptyset} = \emptyset S \subseteq \widehat{S} \subseteq \operatorname{Rng} A_i \widehat{\widehat{S}} = \widehat{S}$$
 [to be dropped for pre-closure]
 $\widehat{S \cup S'} = \widehat{S} \cup \widehat{S'}$

Actually, we downgrade Kuratowski's axioms as follows

$$\begin{array}{ll} \widehat{S} \subseteq \widehat{S'} \text{ whenever } S \subseteq S' & (\text{closure}) \\ \widehat{S} = \widehat{S'} \text{ whenever } S \subseteq S' \subseteq \widehat{S} & (\text{cumulation}) \\ \widehat{S \cup S'} \subseteq \widehat{S} \text{ whenever } S' \subseteq \widehat{S} & (\text{capping}) \end{array}$$

Lemma: Kuratowksi \Rightarrow closure \Rightarrow cumulation \Rightarrow capping

Class of choice functions satisfying capping

Theorem. Given a set Z, let $f : 2^{2^Z} \to 2^Z$ be a function st for every $\mathcal{X} \subseteq 2^Z$ such that $\bigcap \mathcal{X} \in \mathcal{X}$ and for every $\mathcal{Y} \subseteq 2^Z$ 1. $f(\mathcal{X}) \in \mathcal{X}$

2. if $\mathcal{Y} \subseteq \mathcal{X}$ and $\exists W \in \mathcal{Y}$, $W \subseteq f(\mathcal{X})$ then $f(\mathcal{Y}) \subseteq f(\mathcal{X})$ Then, $\widehat{\cdot} : 2^Z \to 2^Z$ as defined by

$$\widehat{X} \stackrel{\text{def}}{=} f(\{Y \mid X \subseteq Y \subseteq Z\})$$

is a capping operator upon Z.

Intuition: Z is $\operatorname{Rng} A_i$ \mathcal{X} (and \mathcal{Y} , too) is a collection of intervals over $\operatorname{Rng} A_i$ moreover, \mathcal{X} is a collection whose intersection is itself a member of the collection Class of choice functions satisfying capping

Theorem. Given a set Z, let $f : 2^{2^Z} \to 2^Z$ be a function st for every $\mathcal{X} \subseteq 2^Z$ such that $\bigcap \mathcal{X} \in \mathcal{X}$ and for every $\mathcal{Y} \subseteq 2^Z$ 1. $f(\mathcal{X}) \in \mathcal{X}$

2. if $\mathcal{Y} \subseteq \mathcal{X}$ and $\exists W \in \mathcal{Y}$, $W \subseteq f(\mathcal{X})$ then $f(\mathcal{Y}) \subseteq f(\mathcal{X})$ Then, $\widehat{\cdot} : 2^Z \to 2^Z$ as defined by

$$\widehat{X} \stackrel{\text{def}}{=} f(\{Y \mid X \subseteq Y \subseteq Z\})$$

is a capping operator upon Z.

Numerical attributes: principle of pairwise point interpolation

Eliciting a rule

S being a square is supposed to capture a rule π requires that every item of S satisfies π

→ generalisation does not capture the statistical representativeness of dataset, but only elicits a rule generalizing all its items

(C)	(A_1)	(A ₂)	(A ₃)	(A ₄)	(A ₅)	(A ₆)
Price	Area	#Rooms	Energy	Town	District	Exposure
low-priced	70	2	D	Toulouse	Minimes	
low-priced	75	4	D	Toulouse	Rangueil	
expensive	65	3		Toulouse	Downtown	
low-priced	32	2	D	Toulouse		SE
mid-priced	65	2	D	Rennes		SW
expensive	100	5	С	Rennes	Downtown	
low-priced	40	2	D	Betton		S
			1			

$$f \downarrow$$

 $A_0 = 2 \land A_4 =$ Toulouse $\Rightarrow C =$ low-priced

	(C)	[((A_1)	(A ₂)	Г	(A ₃)	(A_4)	(A ₅)	(A ₆)	
	Price	1	Area	#Rooms	E	nerg y	Town	District	Exposure	
	low-priced	I	70	2		D	Toulo use	Minimes		
	low-priced		75	4		D	Toulo use	Rangueil		
	expensive		65	3			Toulo use	Downtown		
	low-priced	İ	32	2	İ	D	Toulo use		SE	
٦	mid-priced	Г	65	2	Г	D	Rennes		SW	
	expensive	l	100	5		С	Rennes	Downtown		
ľ	low-priced	İ	40	2		D	Betton		S	
						1				
						f				
	$A_0 \in [2, 4] \Rightarrow C \in \{\text{low-priced}, \text{expensive}\}$									