Counterfactual Algorithms for Explaining Prediction Models on Behavioral and Textual Data Yanou Ramon, David Martens, Foster Provost, Theodoros Evgeniou

AIMLAI workshop (CIKM) – Oct. 20, 2020 – 3:40pm

Behavioral and textual data (High-dimensional & sparse)

(High-dimensional & sparse)

LOCATION DATA NYC: tourist or citizen?

evidence = active feature

→ data is high-dimensional and sparse

LOCATION DATA NYC

"Black Box" model ⇒ Thousands of coefficients ⇒ Nonlinear techniques

(Local) interpretability issues Counterfactual explanations

- Instance-level
- Causality within the model
- Output is a rule: minimal set of features such that the predicted class changes when removing them (setting values to zero)
- Intuitive and valuable for humans → contrastive: "Why X rather than not-X?" (Miller, 2017)

Example: Tourist prediction using NYC location data

Anna visited 120 places last month Anna was predicted as "tourist"

Example: Tourist prediction using NYC location data

Anna visited 120 places last month Anna was predicted as "tourist"

Example: Tourist prediction using NYC location data

Anna visited 120 places last month Anna was predicted as "tourist"

		Columbia University	Time Square	DUMBO	Chelsea Market	Target \hat{y} Tourist
х	Anna	1	1	1	 0	1
z 1	Anna (perturbed)	1	0	0	 0	0

IF Anna would not have visited **{Time Square, DUMBO}**, THEN the predicted class changes from "tourist" to "NY citizen"

COUNTERFACTUAL ALGORITHMS

DESIDERATA

- Model-agnostic
- Find **minimum-sized** counterfactual explanation *E* for a single model prediction of instance **x**

DESIDERATA

- Model-agnostic
- Find **minimum-sized** counterfactual explanation *E* for a single model prediction of instance **x**

More comprehensible (~cognitive limitations)

More actionable: e.g., "cloak" fewer online traces to get a desired outcome (not be targeted with ads of gay bars)

DESIDERATA

WHY COMPLETE SEARCH FAILS

- Start with removing one feature and increase number of features in the subset until the predicted class changes
- Scales exponentially with active features *m* and required number of features *k* to be removed

e.g., for an instance with *m* features, a combination of *k* features requires $\frac{m!}{(m-k)!k!}$ evaluations

BEST-FIRST SEARCH (SEDC)

- Explaining document classifications (Martens & Provost, 2013)
- Model-agnostic algorithm: heuristic best-first search
- Optimal for linear models

NOVEL HYBRID ALGORITHMS

Additive Feature Attribution (AFA) methods:

- LIME: Local Model-agnostic Explainer (Ribeiro et al., 2016)
- SHAP: Shapley Additive Explanations (Lundberg et al., 2018)

Output: Importance-ranked list

NOVEL HYBRID ALGORITHMS

Novelty: importance rankings may be an "intelligent" starting point for computing counterfactuals

$\Rightarrow \text{ LIME-C / SHAP-C}$

⇒ Addresses open problem: how to select complexity of LIME/SHAP for models on behavior/text?

NOVEL HYBRID ALGORITHMS LIME-C / SHAP-C Example: Tourist prediction using NYC location data

Remove features with positive importance weight until the class changes

RESULTS & CONCLUSION

Table 2	Percentage (explained	(counterfactuals	smaller than	30 features)
---------	--------------	-----------	------------------	--------------	--------------

Dataset	Linear			Nonlinear			
	SEDC (%)	LIME-C (%)	SHAP-C (%)	SEDC (%)	LIME-C (%)	SHAP-C (%)	
Flickr	100	99.33	100	28.67	28.67	28.67	
Ecommerce	100	97.33	100	95.00	96.67	99.67	
Airline	100	100	100	100	100	100	
Twitter	100	100	100	100	100	100	
Fraud	100	100	81.67	100	100	75	
YahooMovies	100	100	100	98.67	100	100	
TaFeng	100	100	100	93.33	100	100	
KDD2015	100	100	100	99.67	100	99.67	
20news	100	99.47	100	100	98.94	100	
Movielens_100k	100	100	100	100	100	100	
Facebook	96.67	95.33	95.00	70.33	93.67	90.00	
Movielens_1m	98.67	98.67	98.67	89.67	95.67	95.67	
LibimSeTi	95.67	91.00	89.33	77.33	91.33	89.67	
Average	99.31	98.55	97.28	88.67	92.69	90.64	
# Wins	13	8	10	6	11	9	

For stochastic *LIME-C/SHAP-C*, these are average percentages over 5 runs. The best percentages are indicated in bold. The percentages are underlined if a method is significantly worse than the best method on a 1% significance level using a McNemar mid-*p* test (Fagerland et al. 2013)

5 1	<u> </u>	,					
Dataset	Linear			Nonlinear			
	SEDC (%)	LIME-C (%)	SHAP-C (%)	SEDC (%)	LIME-C (%)	SHAP-C (%)	
Flickr	100	99.33	100	28.67	28.67	28.67	
Ecommerce	100	97.33	100	95.00	96.67	99.67	
Airline	100	100	100	100	100	100	
Twitter	100	100	100	100	100	100	
Fraud	100	100	81.67	100	100	75	
YahooMovies	100	100	100	98.67	100	100	
TaFeng	100	100	100	93.33	100	100	
KDD2015	100	100	100	99.67	100	99.67	
20news	100	99.47	100	100	98.94	100	
Movielens_100k	100	100	100	100	100	100	
Facebook	96.67	95.33	95.00	70.33	93.67	90.00	
Movielens_1m	98.67	98.67	98.67	89.67	95.67	95.67	
LibimSeTi	95.67	91.00	89.33	77.33	91.33	89.67	
Average	99.31	98.55	97.28	88.67	92.69	90.64	
# Wins	13	8	10	6	11	9	
	-						

Table 2 Percentage explained (counterfactuals smaller than 30 features)

For stochastic *LIME-C/SHAP-C*, these are average percentages over 5 runs. The best percentages are indicated in bold. The percentages are underlined if a method is significantly worse than the best method on a 1% significance level using a McNemar mid-*p* test (Fagerland et al. 2013)

Table 2 Percentage explained (counterfactuals smaller than 30 features)

Dataset	Linear SEDC (%)	LIME-C (%)	SHAP-C (%)	Nonlinear SEDC (%)	LIME-C (%)	SHAP-C (%)
	SEDC (<i>n</i>)	LIME-C(<i>h</i>)	511AI -C (<i>N</i>)	SEDC (%)	EliviE-C (%)	5HAI-C (70)
Flickr	100	99.33	100	28.67	28.67	28.67
Ecommerce	100	97.33	100	95.00	96.67	99.67
Airline	100	100	100	100	100	100
Twitter	100	100	100	100	100	100
Fraud	100	100	81.67	100	100	<u>75</u>
YahooMovies	100	100	100	98.67	100	100
TaFeng	100	100	100	93.33	100	100
KDD2015	100	100	100	99.67	100	99.67
20news	100	99.47	100	100	98.94	100
Movielens_100k	100	100	100	100	100	100
Facebook	96.67	95.33	95.00	70.33	93.67	90.00
Movielens_1m	98.67	98.67	98.67	89.67	95.67	95.67
LibimSeTi	95.67	91.00	89.33	77.33	91.33	89.67
Average	99.31	98.55	97.28	88.67	92.69	90.64
# Wins	13	8	10	6	11	9

For stochastic *LIME-C/SHAP-C*, these are average percentages over 5 runs. The best percentages are indicated in bold. The percentages are underlined if a method is significantly worse than the best method on a 1% significance level using a McNemar mid-*p* test (Fagerland et al. 2013)

Table 2	Percentage exp	plained ((counterfactuals	smaller than	30 features)
---------	----------------	-----------	------------------	--------------	--------------

Dataset	Linear			Nonlinear			
	SEDC (%)	LIME-C (%)	SHAP-C (%)	SEDC (%)	LIME-C (%)	SHAP-C (%)	
Flickr	100	99.33	100	28.67	28.67	28.67	
Ecommerce	100	97.33	100	95.00	96.67	99.67	
Airline	100	100	100	100	100	100	
Twitter	100	100	100	100	100	100	
Fraud	100	100	81.67	100	100	<u>75</u>	
YahooMovies	100	100	100	98.67	100	100	
TaFeng	100	100	100	<u>93.33</u>	100	100	
KDD2015	100	100	100	99.67	100	99.67	
20news	100	99.47	100	100	98.94	100	
Movielens_100k	100	100	100	100	100	100	
Facebook	96.67	95.33	95.00	70.33	93.67	90.00	
Movielens_1m	98.67	98.67	98.67	<u>89.67</u>	95.67	95.67	
LibimSeTi	95.67	91.00	89.33	77.33	91.33	89.67	
Average	99.31	98.55	97.28	88.67	92.69	90.64	
# Wins	13	8	10	6	11	9	

For stochastic *LIME-C/SHAP-C*, these are average percentages over 5 runs. The best percentages are indicated in bold. The percentages are underlined if a method is significantly worse than the best method on a 1% significance level using a McNemar mid-*p* test (Fagerland et al. 2013)

CONCLUSION

- **SEDC** most efficient and effective for small data instances, however: - weakness of best-first search for some nonlinear models
- **SHAP-C** overall good performance, however:
 - problems with highly unbalanced data
 - computation time more sensitive to # active features than LIME-C
- **LIME-C**: suitable alternative to SEDC for large data instances:
 - good effectiveness results for all data and models
 - low computation times
 - efficiency least sensitive to size of explanation

! Addresses open issue of LIME/SHAP: setting complexity parameter

Algorithms implemented with Python

SEDC: <u>https://github.com/yramon/edc</u> LIME-C: <u>https://github.com/yramon/LimeCounterfactual</u> SHAP-C: <u>https://github.com/yramon/ShapCounterfactual</u>

THANKS!

Further questions?

Mail: yanou.ramon@uantwerp.be Website: https://yramon.github.io/ www.linkedin.com/in/yanou-ramon www.applieddatamining.com