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Prediction model
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 Thousands of coefficients
 Nonlinear techniques 

“Black Box”?
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Anna 1 1 1 … 0 1

Jack 1 0 0 … 1 0

… … … … … … …

Bill 0 0 1 … 0 0

evidence = active feature 

LOCATION DATA NYC: tourist or citizen?
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 data is high-dimensional and sparse
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“Black Box” model
 Thousands of coefficients
 Nonlinear techniques

? ො𝑦 = 1 if tourist
else ො𝑦 = 0

LOCATION DATA NYC 
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(Local) interpretability issues
 Counterfactual explanations
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COUNTERFACTUAL EXPLANATIONS

● Instance-level
● Causality within the model
● Output is a rule: minimal set of features such that the predicted 

class changes when removing them (setting values to zero)
● Intuitive and valuable for humans  contrastive: “Why X rather 

than not-X?” (Miller, 2017)
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COUNTERFACTUAL EXPLANATIONS

Example: Tourist prediction using NYC location data

Anna visited 120 places last month
Anna was predicted as “tourist” 
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COUNTERFACTUAL EXPLANATIONS

Example: Tourist prediction using NYC location data

Anna visited 120 places last month
Anna was predicted as “tourist” 

Why?
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COUNTERFACTUAL EXPLANATIONS

Example: Tourist prediction using NYC location data

Anna visited 120 places last month
Anna was predicted as “tourist” 

IF Anna would not have visited {Time Square, DUMBO},
THEN the predicted class changes from “tourist” to “NY citizen”
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COUNTERFACTUAL 
ALGORITHMS



DESIDERATA

● Model-agnostic
● Find minimum-sized counterfactual explanation 𝑬 for a 

single model prediction of instance 𝐱
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DESIDERATA

● Model-agnostic
● Find minimum-sized counterfactual explanation 𝑬 for a 

single model prediction of instance 𝐱
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More actionable: e.g., “cloak” fewer online traces to get a 
desired outcome (not be targeted with ads of gay bars)

More comprehensible (~cognitive limitations)
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DESIDERATA
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𝐱

𝒛∗ = 𝒛𝟏

𝒛𝟐

𝒛𝟑
𝒛𝟒

𝒛𝟓

𝒅

tourist

NY citizen

𝒛∗ = 𝒙\{Time Square, DUMBO}

perturbed instances

original instance

𝒅 distance

𝑬∗ = {Time Square, DUMBO}

𝒛𝟔
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WHY COMPLETE SEARCH FAILS

● Start with removing one feature and increase number of features 
in the subset until the predicted class changes

● Scales exponentially with active features 𝑚 and required number 
of features 𝑘 to be removed
e.g., for an instance with m features, a combination of 𝑘 features 
requires 𝑚!

𝑚−𝑘 !𝑘!
evaluations
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BEST-FIRST SEARCH (SEDC)

● Explaining document classifications (Martens & Provost, 2013)

● Model-agnostic algorithm: heuristic best-first search
● Optimal for linear models 
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BEST-FIRST SEARCH (SEDC)

Check “active” 
features

Expand best-first 
feature (set) with 
one extra feature

Counterfactual 
explanation found

Class change?

Class change?

No?

No? Yes?

Yes?
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NOVEL HYBRID ALGORITHMS

Additive Feature Attribution (AFA) methods:
● LIME: Local Model-agnostic Explainer (Ribeiro et al., 2016)

● SHAP: Shapley Additive Explanations (Lundberg et al., 2018)

Output: Importance-ranked list
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Novelty: importance rankings may be an “intelligent” 
starting point for computing counterfactuals

 LIME–C / SHAP-C 
 Addresses open problem: how to select complexity of 

LIME/SHAP for models on behavior/text?

NOVEL HYBRID ALGORITHMS
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NOVEL HYBRID ALGORITHMS
LIME-C / SHAP-C
Example: Tourist prediction using NYC location data

Remove features with 
positive importance
weight until the 
class changes
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…

0.211 Time Square

0.205 DUMBO

0.202 Central Park

0.197 Top of the Rock

0.192 MoMA

0.186 Fifth Avenue

0.183 Eataly

Washington Square Park        -0.185
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RESULTS & CONCLUSION
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PERCENTAGE EXPLAINED
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PERCENTAGE EXPLAINED
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PERCENTAGE EXPLAINED
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PERCENTAGE EXPLAINED



CONCLUSION

• SEDC most efficient and effective for small data instances, however:
- weakness of best-first search for some nonlinear models

• SHAP-C overall good performance, however:
- problems with highly unbalanced data
- computation time more sensitive to # active features than LIME-C

• LIME-C: suitable alternative to SEDC for large data instances:
- good effectiveness results for all data and models
- low computation times
- efficiency least sensitive to size of explanation

! Addresses open issue of LIME/SHAP: setting complexity parameter
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Algorithms implemented with Python
SEDC: https://github.com/yramon/edc
LIME-C: https://github.com/yramon/LimeCounterfactual
SHAP-C: https://github.com/yramon/ShapCounterfactual

CODE & TUTORIALS
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https://github.com/yramon/edc
https://github.com/yramon/LimeCounterfactual
https://github.com/yramon/ShapCounterfactual


CREDITS: This presentation template was created by Slidesgo, 
including icons by Flaticon, and infographics & images by Freepik. 

Please keep this slide for attribution.

Further questions?

Mail: yanou.ramon@uantwerp.be
Website: https://yramon.github.io/
www.linkedin.com/in/yanou-ramon
www.applieddatamining.com

THANKS!
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http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:yanou.ramon@uantwerp.be
https://yramon.github.io/
http://www.linkedin.com/in/yanou-ramon
http://www.applieddatamining.com/

