Now You See Me (CME): Concept-based Model Extraction

Dmitry Kazhdan*, Botty Dimanov*, Mateja Jamnik*, Pietro Liò*, Adrian Weller*^

* The University of Cambridge
^ The Alan Turing Institute
Feature Importance Explanations

CNNs applied to many tasks (e.g. facial recognition, object recognition, VQA...)

Diagram: Cat → CNN → Cat
Feature Importance Explanations

- CNNs applied to many tasks (e.g. facial recognition, object recognition, VQA...)
- Unfortunately, CNNs are black-boxes
- Lots of interest in XAI
CNNs applied to many tasks (e.g. facial recognition, object recognition, VQA...)
Unfortunately, CNNs are black-boxes
Lots of interest in XAI
Existing approaches are based on feature importance (aka heat maps)
Feature Importance Explanations

- CNNs **applied to many tasks** (e.g. facial recognition, object recognition, VQA…)
- Unfortunately, CNNs are **black-boxes**
- Lots of interest in **XAI**
- Existing approaches are based on **feature importance** (aka heat maps)
- However, shown to be **fragile** and susceptible to **confirmation bias**
Feature Importance Explanations

- CNNs **applied to many tasks** (e.g. facial recognition, object recognition, VQA…)
- Unfortunately, CNNs are **black-boxes**
- Lots of interest in **XAI**
- Existing approaches are based on **feature importance** (aka heat maps)
- However, shown to be **fragile** and susceptible to **confirmation bias**

I looked at this explanation, but it only proved what I already knew…
Recent work explores **concept-based explanations**

Explanations provided in terms of high-level concepts (aka attributes)
We introduce the notion of **concept decomposition**.

New type of concept-based model

Separates model processing into:

- **Concept extraction**: predicting concept information from input
- **Label prediction**: predicting class labels from concept information

Concept-decompositional models process inputs hierarchically.
Assume you have concept labels for every input sample
Create a CNN with a “bottleneck” layer
Regularise bottleneck during training, ensuring it predicts provided concepts

Concept Bottleneck Models

regularised to predict specified concepts

Bottleneck CNN
Concept Bottleneck Models

- Assume you have concept labels for every input sample
- Create a CNN with a “bottleneck” layer
- Regularise bottleneck during training, ensuring it predicts provided concepts

Trained With:

Concept Loss + Task Loss

Bottleneck CNN

Cat

regularised to predict specified concepts

fur: True
whiskers: True
wings: False
CBMs:
- Assumes all relevant concepts are known
- Assumes every input point has associated concept labels available

However:
- Unregularised CNNs still learn the relevant concepts
- Can therefore extract this knowledge from CNNs

![Diagram](image)

Trained With: Concept Loss + Task Loss
CME: (C)oncept-based (M)odel (E)xtraction

- Take a pre-trained CNN
- Train a semi-supervised concept predictor model on top of layer activations
- Train label predictor on top of concept predictor
- Leverage CNNs for performing concept information extraction automatically
CME: (C)oncept-based (M)odel (E)xtraction

- Take a pre-trained CNN
- Train a semi-supervised concept predictor model on top of layer activations
- Train label predictor on top of concept predictor
- Leverage CNNs for performing concept information extraction automatically

Diagram:

- Pre-trained CNN
- Concept Extraction
- CME model

Activation information flows from the pre-trained CNN to the CME model, which then extracts concept information.
CME: (C)oncept-based (M)odel (E)xtraction

- Take a pre-trained CNN
- Train a semi-supervised concept predictor model on top of layer activations
- Train label predictor on top of concept predictor
- Leverage CNNs for performing concept information extraction automatically
dSprites

- 2D 64x64 black-and-white images
- Generated from all possible combinations of concepts:
 - Shape (square, ellipse, heart)
 - Scale (6 values linearly spaced in [0.5, 1])
 - Orientation (40 values in [0, 2 pi])
 - Position X (32 values in [0, 1])
 - Position Y (32 values in [0, 1])
dSprites Highlights

.task: (shape, scale) ==> unique class ID

- CNN trained to predict these class IDs from images
- Benchmarked against Net2Vec for concept extraction
- Used tSNE to explore model latent space wrt concepts
dSprites Highlights

- Task: (shape, scale) ==> unique class ID
- CNN trained to predict these class IDs from images
- Benchmarked against Net2Vec for concept extraction
- Used tSNE to explore model latent space wrt concepts

Increasing disentanglement of relevant concepts
dSprites Highlights

Relevant concepts (shape & scale) predicted by CME with high accuracy

Task performances:
Original CNN: 100.0 +/- 0.3%
CME model: 99.3 +/- 0.5%

Only required 100 concept-labelled samples
Caltech-UCSD Birds

- 11,788 images of 200 bird species
- 112 binary concepts, such as:
 - Beak colour
 - Wing colour
 - Beak shape
 - etc…
- Task: Predicting the correct bird species
- Compared CME with CBM approaches
- Demonstrated how CME can be used to filter out irrelevant concepts
- See paper for more details
Future Directions

- Human-in-the-Loop extensions:
 - CME: can't fine-tune/correct the model
 - Explore interactive methodologies for extracting and injecting concept information

- Further applications:
 - In imaging tasks, “concepts” are often not rigorously-defined
 - In other areas (e.g. physics, or drug discovery), there are tasks with more well-defined domain-specific concepts
Conclusions

- Concept-based explanations gaining traction
- Concept Decomposition (CD): new type of deep concept-based model
- CME leverages power/knowledge of pre-trained CNNs to extract CD models
- Showcased results
- Discussed future work