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Concept-based Explanations

๏Recent work explores concept-based explanations 
๏Explanations provided in terms of high-level concepts (aka attributes) 
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Concept Decomposition

๏We introduce notion of concept decomposition 
๏New type of concept-based model 
๏Separates model processing into: 

๏Concept extraction: predicting concept information from input 
๏Label prediction: predicting class labels from concept information 

๏Concept-decompositional models process inputs hierarchically 
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๏Assume you have concept labels for every input sample 
๏Create a CNN with a “bottleneck” layer 
๏Regularise bottleneck during training, ensuring it predicts provided concepts 
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๏CBMs: 
๏Assumes all relevant concepts are known 
๏Assumes every input point has associated concept labels available 

๏However: 
๏Unregularised CNNs still learn the relevant concepts 
๏Can therefore extract this knowledge from CNNs 
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dSprites

๏2D 64x64 black-and-white images 
๏Generated from all possible combinations of concepts: 

๏Shape (square, ellipse, heart) 
๏Scale (6 values linearly spaced in [0.5, 1]) 
๏Orientation (40 values in [0, 2 pi]) 
๏Position X (32 values in [0, 1]) 
๏Position Y (32 values in [0, 1]) 



dSprites Highlights

๏Task: (shape, scale) ==> unique class ID 
๏CNN trained to predict these class IDs from images 
๏Benchmarked against Net2Vec for concept extraction 
๏Used tSNE to explore model latent space wrt concepts 
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dSprites Highlights

Task performances: 
Original CNN: 100.0 +/- 0.3% 
CME model:      99.3 +/- 0.5%

Relevant concepts (shape & scale) 
predicted by CME with high accuracy

Only required 100 concept-
labelled samples



Caltech-UCSD Birds

๏11,788 images of 200 bird species 
๏112 binary concepts, such as: 

๏Beak colour 
๏Wing colour 
๏Beak shape 
๏etc… 

๏Task: Predicting the correct bird species 
๏Compared CME with CBM approaches 
๏Demonstrated how CME can be used to filter out irrelevant concepts 
๏See paper for more details



Future Directions

๏Human-in-the-Loop extensions: 
๏CME: can't fine-tune/correct the model 
๏Explore interactive methodologies for extracting and injecting concept information 

๏Further applications: 
๏ In imaging tasks, “concepts” are often not rigorously-defined 
๏ In other areas (e.g. physics, or drug discovery), there are tasks with more well-

defined domain-specific concepts 



Conclusions

๏Concept-based explanations gaining traction 

๏Concept Decomposition (CD): new type of deep concept-based model 

๏CME leverages power/knowledge of pre-trained CNNs to extract CD models 

๏Showcased results 

๏Discussed future work 

๏Link: http://ceur-ws.org/Vol-2699/paper02.pdf


