Now You See Me (CME): Concept-based Model Extraction

Dmitry Kazhdan*, Botty Dimanov*, Mateja Jamnik*, Pietro Liò*, Adrian Weller*^
* The University of Cambridge
^ The Alan Turing Institute

The Alan Turing Institute

© CNNs applied to many tasks (e.g. facial recognition, object recognition, VQA...)

- © CNNs applied to many tasks (e.g. facial recognition, object recognition, VQA...)
- Unfortunately, CNNs are black-boxes
- Lots of interest in XAI

- © CNNs applied to many tasks (e.g. facial recognition, object recognition, VQA...)
- Unfortunately, CNNs are black-boxes
- Lots of interest in XAI
- Existing approaches are based on feature importance (aka heat maps)

- © CNNs applied to many tasks (e.g. facial recognition, object recognition, VQA...)
- Unfortunately, CNNs are black-boxes
- Lots of interest in XAI
- Existing approaches are based on feature importance (aka heat maps)
- However, shown to be fragile and susceptible to confirmation bias

- © CNNs applied to many tasks (e.g. facial recognition, object recognition, VQA...)
- Unfortunately, CNNs are black-boxes
- Lots of interest in XAI
- Existing approaches are based on feature importance (aka heat maps)
- However, shown to be fragile and susceptible to confirmation bias

Concept-based Explanations

- Recent work explores concept-based explanations
- Explanations provided in terms of high-level concepts (aka attributes)

Concept Decomposition

- We introduce notion of concept decomposition
- New type of concept-based model
- Separates model processing into:
 - Concept extraction: predicting concept information from input
 - Label prediction: predicting class labels from concept information
- Concept-decompositional models process inputs hierarchically

Concept Bottleneck Models

- Assume you have concept labels for every input sample
- Create a CNN with a "bottleneck" layer
- Regularise bottleneck during training, ensuring it predicts provided concepts

Concept Bottleneck Models

- Assume you have concept labels for every input sample
- Create a CNN with a "bottleneck" layer
- Regularise bottleneck during training, ensuring it predicts provided concepts

Concept Bottleneck Models

⊚ CBMs:

- Assumes all relevant concepts are known
- Assumes every input point has associated concept labels available

Mowever:

- Unregularised CNNs still learn the relevant concepts
- Can therefore extract this knowledge from CNNs

CME: (C)oncept-based (M)odel (E)xtraction

- Take a pre-trained CNN
- Train a semi-supervised concept predictor model on top of layer activations
- Train label predictor on top of concept predictor
- Leverage CNNs for performing concept information extraction automatically

CME: (C)oncept-based (M)odel (E)xtraction

- Take a pre-trained CNN
- Train a semi-supervised concept predictor model on top of layer activations
- Train label predictor on top of concept predictor
- Leverage CNNs for performing concept information extraction automatically

CME: (C)oncept-based (M)odel (E)xtraction

- Take a pre-trained CNN
- Train a semi-supervised concept predictor model on top of layer activations
- Train label predictor on top of concept predictor
- Leverage CNNs for performing concept information extraction automatically

dSprites

- 2D 64x64 black-and-white images
- Generated from all possible combinations of concepts:
 - Shape (square, ellipse, heart)
 - Scale (6 values linearly spaced in [0.5, 1])
 - Orientation (40 values in [0, 2 pi])
 - Position X (32 values in [0, 1])
 - Position Y (32 values in [0, 1])

dSprites Highlights

- Task: (shape, scale) ==> unique class ID
- CNN trained to predict these class IDs from images
- Benchmarked against Net2Vec for concept extraction
- Used tSNE to explore model latent space wrt concepts

dSprites Highlights

- Task: (shape, scale) ==> unique class ID
- CNN trained to predict these class IDs from images
- Benchmarked against Net2Vec for concept extraction
- Used tSNE to explore model latent space wrt concepts

Increasing disentanglement of relevant concepts

dSprites Highlights

Caltech-UCSD Birds

- - Beak colour
 - Wing colour
 - Beak shape
 - etc...
- Task: Predicting the correct bird species
- Compared CME with CBM approaches
- Demonstrated how CME can be used to filter out irrelevant concepts
- See paper for more details

Future Directions

- Human-in-the-Loop extensions:
 - © CME: can't fine-tune/correct the model
 - Explore interactive methodologies for extracting and injecting concept information
- Further applications:
 - In imaging tasks, "concepts" are often not rigorously-defined
 - In other areas (e.g. physics, or drug discovery), there are tasks with more well-defined domain-specific concepts

Conclusions

- Concept-based explanations gaining traction
- © Concept Decomposition (CD): new type of deep concept-based model
- © CME leverages power/knowledge of pre-trained CNNs to extract CD models
- Showcased results
- Discussed future work
- Link: http://ceur-ws.org/Vol-2699/paper02.pdf

