Demystifying Graph Neural Network Explanations

Anna Himmelhuber, Mitchell Joblin, Martin Ringsquandl, Thomas Runkler

on the basis of a decision by the German Bundestag

Technische Universität München

XAI on Graph Neural Networks

- Many important real-world data sets are graphs or networks
- Graph Neural Networks lack transparency in their decision-making
- Nonetheless, they are a promising candidate for producing reach explanations

Perturbation-based Explainer Methods

•	GNNExplainer ¹	•	ZORRO ³
•	CF-GNNExplainer ²	•	PGExplainer ⁴

¹Ying, Rex, et al. "Gnnexplainer: Generating explanations for graph neural net-works." Advances in neural information processing systems 32 (2019): 9240
 ²Lucic, Ana, et al. "CF-GNNExplainer: Counterfactual Explanations for GraphNeural Networks."
 ³Funke, Thorben, Megha Khosla, and Avishek Anand. "Hard Masking for Explain-ing Graph Neural Networks." (2020)
 ⁴. D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang, "Parameterized explainer for graph neural network," in Advances in neural information processing systems, 2020.

SIEMENS

Demystifying GNN Explanations

The current methods and data used to evaluate GNN explanations lack maturity. We explore these existing approaches and identify common pitfalls in three main areas:

- (1) Synthetic data generation process
- (2) Evaluation metrics
- (3) Final presentation of the explanation

(1) Synthetic data generation process

• Synthetic data sets with intuitive motifs are used for explanation evaluation

(1) Synthetic data generation process

Remedy: Motif Search

Page 6 Unrestricted | © Siemens 2021

SIEMENS

(2) Evaluation metrics

- Differing Accuracy definitions
- ROC AUC overly optimistic for imbalanced data set
- Threshold-dependent metrics should be included

Class	ROC	\mathbf{SD}	PR AUC	SD	\mathbf{Recall}	\mathbf{SD}
	AUC		(proposed)		(proposed)	
Top Nodes	0.98	0.07	0.69	0.19	0.65	0.18
Shoulder Nodes	0.98	0.91	0.51	0.19	0.51	0.13
Bottom Nodes	0.93	0.18	0.56	0.22	0.57	0.21
Cycle Nodes	0.71	0.22	0.55	0.16	0.52	0.14

Comparison of ROC AUC, PR AUC and Recall scores

PR AUC/Recall are more insightful

(3) Final presentation of the explanation

• Label flips indicate lacking fidelity of explanations

SIEMENS

(3) Final presentation of the explanation

- Choice of threshold is non-trivial
- Trade-off between compactness and completeness of explainer subgraph

Class	Accuracy	Accuracy	
	th = 6	th = 20	
Top Nodes	0.65	0.98	
Shoulder Nodes	0.51	0.82	
Bottom Nodes	0.57	0.75	
Cycle Nodes	0.52	0.97	

Recall for different thresholds

Grid-search to find optimal threshold

References

[1] Arrieta, Alejandro Barredo, et al. "Explainable Artificial Intelligence (XAI): Con-cepts, taxonomies, opportunities and challenges toward responsible AI." InformationFusion 58 (2020): 82-115.

[2] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph con-volutional networks." ICLR (2017).

[3] Lecue, Freddy. "On the role of knowledge graphs in explainable AI." Semantic Web11.1 (2020): 41-51.

[4] Lucic, Ana, et al. "CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks." (2021).

[5] Robnik- Sikonja, Marko, and Marko Bohanec. "Perturbation-based explanations of prediction models." Human and machine learning. Springer, Cham, 2018. 159-175.

[6] Xu, Keyulu, et al. "How powerful are graph neural networks?." ICLR (2018)

[7] Ying, Rex, et al. "Gnnexplainer: Generating explanations for graph neural net-works." Advances in neural information processing systems 32 (2019):

[8] Funke, Thorben, Megha Khosla, and Avishek Anand. "Hard Masking for Explain-ing Graph Neural Networks." (2020).
[9] Yuan, Hao, et al. "Explainability in graph neural networks: A taxonomic survey." (2020).

[10] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang, "Parameterized explainer for graph neural network," in Advances in neural information processingsystems, 2020.

[11] H. Yuan, H. Yu, J. Wang, K. Li, and S. Ji, "On explainability of graph neuralnetworks via subgraph explorations,"

