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Attributions in explainable AI
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The LIME approach
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1. Segment data 2. Create masks and 
get predictions

3. Train interpretable 
model on mask and 
predictions

4. Get most important 
component for 
prediction

https://theblue.ai/wp-content/uploads/2019/04/figure4.jpg



The LIME approach for time series
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1. Segment data 2. Create masks and 
get predictions

3. Train interpretable 
model on mask and 
predictions

4. Get most important 
component for 
prediction

https://theblue.ai/wp-content/uploads/2019/04/figure4.jpg
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Time series segmentation

• What are meaningful segments for time series?

• Uniform?

• Does not look very meaningful
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Segmentations for time series
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Uniform segmentation Exponential segmentation



Segmentations for time series
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Uniform segmentation Exponential segmentation

Problems: 
• Static and the same for every feature
• Important components can be split into two segments

So: How can we improve these segments?



Matrix Profile
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a vector that stores the z-normalized Euclidean distance between any subsequence within a time series and its nearest neighbour

https://stumpy.readthedocs.io/en/latest/Tutorial_The_Matrix_Profile.html
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Matrix Profile
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a vector that stores the z-normalized Euclidean distance between any subsequence within a time series and its nearest neighbour
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Proposed slopes segmentation
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Slopes segmentation

Using the matrix profile

Take slopes of matrix profile
-> largest jump leads to change in nearest neighbours



Proposed bins segmentation
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Bins-max segmentation Bins-min segmentation

Using the matrix profile

Take horizontal bins and assign segments based 
on the corresponding bin in the matrix profile



Proposed SAX segmentation
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Using the SAX transformation

https://pyts.readthedocs.io/en/stable/_images/sphx_glr_plot_sax_001.png



Comparison
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Evaluation through fidelity perturbation

• Assumption:
• Change data according to attribution

=> get worse accuracy of model for changed data
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Preliminary results
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Uniform 2.31 4.24 2.32 1.50 9.00 7.67 2.43 0.22 6.55

Exponential 0.56 1.12 1.41 0.62 0.16 11.52 0.55 0.01 0.62

Slopes 1.31 2.11 1.95 1.30 6.76 3.97 3.39 0.18 9.29

Bins Min 0.35 3.43 3.60 0.41 10.46 5.71 1.25 0.40 7.38

Bins Max 1.69 1.22 2.38 1.52 1.68 2.67 1.44 0.44 2.68

SAX 1.24 2.58 2.23 1.10 8.00 4.15 1.55 1.16 7.34

Take accuracy change of attributions and scale by random perturbation accuracy change
=> Larger than 1 shows working explanations

Input length of dataset



Conclusion
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• Improved segmentations improve explanations

• Different architectures work better with 
different segmentations

• Evaluate parameters (e.g., window size)

• Improve presented algorithms to better handle 
close splits to get less segments

Source Code can be found at: 

https://github.com/dbvis-ukon/ts-mule


