

TS-MULE

Local Interpretable Model-Agnostic Explanations For Time Series Forecast Models

Udo Schlegel, Duy Lam Vo, Daniel A. Keim, and Daniel Seebacher University of Konstanz

Attributions in explainable AI

The LIME approach

1. Segment data

Interpretable Components 2. Create masks and get predictions

3. Train interpretable model on mask and predictions

4. Get most important component for prediction

Explanation

The LIME approach for time series

1. Segment data

2. Create masks and get predictions

3. Train interpretable model on mask and predictions

Query

Locally weighted

regression

4. Get most important component for prediction

Time series segmentation

• What are meaningful segments for time series?

• Uniform?

• Does not look very meaningful

Segmentations for time series

Uniform segmentation

Exponential segmentation

Segmentations for time series

Uniform segmentation

Exponential segmentation

Problems:

<mark>111</mark>30 -

20

- Static and the same for every feature
- Important components can be split into two segments

a vector that stores the z-normalized Euclidean distance between any subsequence within a time series and its nearest neighbour

Pairwise Euclidean Distance

#DistanceProfile

a vector that stores the z-normalized Euclidean distance between any subsequence within a time series and its nearest neighbour

Pairwise Euclidean Distance

7.4 6.9	14.7	19.3	17.7	19.9	15.0	8.2	8.9			
---------	------	------	------	------	------	-----	-----	--	--	--

#BestMatch

a vector that stores the z-normalized Euclidean distance between any subsequence within a time series and its nearest neighbour

Pairwise Euclidean Distance

#BestMatch

Distance Matrix

	*	6.9	*	*	*	*	*	*	*		
*		*	*	*	*	*	*	1.4	*		
*	*		*	*	*	*	*	*	6.2		
*	7.9	*		*	*	*	*	*	*		
*	*	*	*		*	*	*	*	11.4		
*	*	13.6	*	*		*	*	*	*		
*	*	*	*	*	*		14.1	*	*		
*	*	14.0	*	*	*	*		*	*		
*	1.4	*	*	*	*	*	*		*		
*	*	6.2	*	*	*	*	*	*			

a vector that stores the z-normalized Euclidean distance between any subsequence within a time series and its nearest neighbour

Distance Matrix

	*	6.9	*	*	*	*	*	*	*		
*		*	*	*	*	*	*	1.4	*		
*	*		*	*	*	*	*	*	6.2		
*	7.9	*		*	*	*	*	*	*		
*	*	*	*		*	*	*	*	11.4		
*	*	13.6	*	*		*	*	*	*		
*	*	*	*	*	*		14.1	*	*		
*	*	14.0	*	*	*	*		*	*		
*	1.4	*	*	*	*	*	*		*		
*	*	6.2	*	*	*	*	*	*			

#MatrixProfileAnnotation

Proposed slopes segmentation

Using the matrix profile

Take slopes of matrix profile -> largest jump leads to change in nearest neighbours

Slopes segmentation

Using the matrix profile

Take horizontal bins and assign segments based on the corresponding bin in the matrix profile

Bins-max segmentation

Bins-min segmentation

Proposed SAX segmentation

https://pyts.readthedocs.io/en/stable/_images/sphx_glr_plot_sax_001.png

Using the SAX transformation

30 -

20 -

100

Evaluation through fidelity perturbation

- Assumption:

 - Change data according to attribution
 => get worse accuracy of model for changed data

Preliminary results

Zero		CNN	DNN	RNN	Ξ	CNN	DNN	RNN		CNN	DNN	RNN
Uniform	Beijing /	<u>2.31</u>	<u>4.24</u>	2.32	eijing	1.50	9.00	7.67	Metro Int	2.43	0.22	6.55
Exponential		0.56	1.12	1.41	y Air C	0.62	0.16	<u>11.52</u>		0.55	0.01	0.62
Slopes	Air Qu	1.31	2.11	1.95	Qualit	1.30	6.76	3.97	ersta	<u>3.39</u>	0.18	<u>9.29</u>
Bins Min	ality	0.35	3.43	<u>3.60</u>	y Mu	0.41	<u>10.46</u>	5.71	te Tra	1.25	0.40	7.38
Bins Max	2.5	1.69	1.22	2.38	lti Sit	<u>1.52</u>	1.68	2.67	affic	1.44	0.44	2.68
SAX		1.24	2.58	2.23	Φ	1.10	8.00	4.15		1.55	<u>1.16</u>	7.34

Input length of dataset

Take accuracy change of attributions and scale by random perturbation accuracy change => Larger than 1 shows working explanations

Conclusion

- Improved segmentations improve explanations
- Different architectures work better with different segmentations
- Evaluate parameters (e.g., window size)
- Improve presented algorithms to better handle close splits to get less segments

Source Code can be found at: https://github.com/dbvis-ukon/ts-mule

