

Interpretability in Activation Space Analysis of Transformers: A Focused Review

Soniya Vijayakumar German Research Institute of Artificial Intelligence (DFKI), Saarland Informatics Campus, Saarland, Germany

AIMLAI: Advances in Interpretable Machine Learning and Artificial Intelligence Workshop, CIKM 2022

Agenda

- 1. Introduction
- 2. Concepts
- 3. Observation and Summary

Activation Space

Transformer Models

- **Focus**: interpretability methods to understand the learnings in feed-forward layers.
- The latent space, that comprises of the activations extracted from these layers, as the *Activation Space*.

Survey (2018 - 2022)

- Explainability methods in the NLP domain in the transformer architecture.
- Feed-forward neuron-level, individual vs global, within the transformer model.

Neural Memory Cells

Knowledge Illusion

Bolukbasi et al. [17] describe a surprising phenomenon "interpretability illusion"

Knowledge Illusion

- BERT-base-uncased model.
- Determine if individual neurons contained human-interpretable meaning.
- Identify Patterns: a single property such as sentence length or lexical similarity shared by a set of sentences.
- Illusion sources: dataset idiosyncrasy, local semantic coherence in BERT's embedding space, and annotator error.

- Top-10 activating sentences for the neuron.
- Top-10 activating sentences in random direction.
- 10 random sentences.
- illusion further explored by studying
 - Regions of activation space the input data occupies.
 - Influence of top activating sentences on patterns from both local semantic coherence and global directions.
 - Annotation Error.
- Qualitative analysis is conducted through visualization
 -> sentences cluster in accordance with datasets.

Observations

- Local interpretability methods and limit themselves to the top N salient neurons.
- Alternates between identifying neurons that capture the relevant linguistic information and neuron subsets that affect the
 prediction accuracy.
- Some interpretability methods evaluated through **user studies** whereas others in terms of how they **satisfy some properties**, either quantitatively or qualitatively, without real users' evaluations.
- Lack of both theoretical foundations and empirical considerations in evaluations. -> Confined scope: specific model architectures or task-related domains.
 - **Fixed model architecture:** fixed set of neurons are examined, each set of neurons encode different information, dependent on the input dataset.
 - Wider model architectures: same neurons set encode similar information at lower and higher layers across architectures, dependent on the underlying task.

Summary

Emphasize the **dependency** on the **input data** and the **underlying task** of interpreting the linguistic information encoded in the activation space.

Gap in human-understandable linguistic concepts and linguistic features captured in the network. Inclusion of Domain Expertise

Extend the interpretability techniques from image processing to the natural language processing domain through transfer learning.

References

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, CoRR. abs/1706.03762 (2017). URL: http://arxiv.org/abs/1706.03762. arXiv:1706.0376

[8] D. Dai, L. Dong, Y. Hao, Z. Sui, F. Wei, Knowledge neurons in pretrained transformers, CoRR. abs/2104.08696 (2021). URL: https://arxiv.org/abs/2104.08696. arXiv:2104.08696

[12] M. Geva, R. Schuster, J. Berant, O. Levy, Transformer feed-forward layers are key-value memories, CoRR abs/2012.14913 (2020). URL: https://arxiv.org/abs/2012.14913. arXiv:2012.14913

[14] N. Durrani, H. Sajjad, F. Dalvi, How transfer learning impacts linguistic knowledge in deep NLP models?, in: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, As sociation for Computational Linguistics, Online, 2021, pp. 4947–4957. URL: <u>https://aclanthology</u>. org/2021.findings-acl.438. doi: 10.18653/v1/2021. findings- acl.438

[15] N. Durrani, H. Sajjad, F. Dalvi, Y. Belinkov, Analyzing individual neurons in pre-trained language models, CoRR abs/2010.02695 (2020). URL: https://arxiv.org/abs/2010.02695. arXiv:2010.02695

[16] J. Alammar, Ecco: An open source library for the explainability of transformer language models, in: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations, Association for Computational Linguistics, Online, 2021, pp. 249–257. URL: https://aclanthology.org/2021.acl-demo.30. doi: 10.18653/v1/2021.acl-demo.30

[17] T. Bolukbasi, A. Pearce, A. Yuan, A. Coenen, E. Reif, F. B. Viégas, M. Wattenberg, An interpretability illusion for BERT, CoRR abs/2104.07143 (2021). URL: https://arxiv.org/abs/2104.07143. arXiv:2104.07143

21.10.2022 | Interpretability in Activation Space Analysis

In Short

Methods	Properties	NLP Tasks	Evaluation Metric	Human Evaluation: Are there human understandable concepts -> Q vs Q
Linguistic Phenomena	Word Morphology, Lexical Semantics, Sentence Length, Parts-of-Speech	Parts-of-Speech, Semantic and Syntax tagging and prediction, Syntactic Chunking	Sensitivity, Prediction Accuracy, Selectivity Score	Human-expert visual inspection of selected neurons
Neural Memory Cells	Vocabulary Distribution, Human-Interpretable Patterns, Factual Knowledge	Next Sequence Prediction, Fill-in-the-blank Cloze Task	Agreement Rate, Prediction Probability, Attribution Score, Perplexity, Change and Success Rate	Pattern search by human experts in single memory cells and aggregated multiple cells in multiple layers
Knowledge Illusion	Lexical, Geometric Properties (Local Semantic Coherence)	Next Sequence Prediction	Projection Score, Activation Quantile and Word Frequency Correlation	Human annotations for patterns using visualization