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Decision	Trees	and	Interpretability

• Decision	trees	are	a	family	of	interpretable	models.

• What	about	accuracy?
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Greedy	Algorithms	for	Decision	Trees

• Old	fashioned	decision	tree	algorithms	split	using	greedy	heuristics.
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Greedy	Algorithms	for	Decision	Trees

• Old	fashioned	decision	tree	algorithms	split	using	greedy	heuristics.

• Optimal	decision	tree	models	don’t	do	this!
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Optimal	Sparse	Decision	Trees

• How	to	find	the	right	decision	tree?

• Optimize	an	objective	over	all	possible	decision	trees!
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Let																																																															,	find	decision	tree	𝑡 such	that:

[1]	Learning	optimal	decision	trees	using	caching	branch-and-bound	search.	Aglin et	al.		(AAAI	2020)
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Sparsity

Harder	to	solve!



Branch	&	Bound	Algorithm	and	its	Limitations

• Start	with	the	full	dataset	and	a	majority	class	label.

• Iteratively	split	it	into	subsets	using	each	feature.

• Use	some	computational	tricks	to	save	time.	
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• Start	with	the	full	dataset	and	a	majority	class	label.

• Iteratively	split	it	into	subsets	using	each	feature.

• Use	some	computational	tricks	to	save	time.	

✶ These	algorithms	are	slow	due	to	continuous	features	and	convergence	of	bounds.

Branch	&	Bound	Algorithm	and	its	Limitations
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Guessing	Techniques

• McTavish	et	al.	have	addressed	these	limitations.

• Use	a	black	box	reference	model	to	inform	the	search!

1. Threshold	guessing

2. Lower	bound	guessing

3. Depth	bound	guessing
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Let																																																															,	find	decision	tree	𝑡 such	that:

[4]	Fast	Sparse	Decision	Tree	Optimization	via	Reference	Ensembles.	McTavish	et	al.	(AAAI	2022)	



How	to	Incorporate	Weights?

• These	algorithms	cannot handle	weighted	data	samples!

• Existing	techniques	cannot produce	policies	that	incorporate	inverse	propensity	

weighting	on	individual	data	points!

• Example:	In	policy	design,	Imbalanced	datasets,	fairness,	treatment	regimes,	

different	cost	of	misclassification,	etc.
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How	to	Incorporate	Weights?		(Cont.)

• We	present	three	algorithms	for	efficient	sparse	weighted	decision	tree	

optimization:

✶ Directly	optimize	the	weighted	loss	function,

✶ Data	duplication,

✶Weighted	sampling.
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• Directly	optimize	the	weighted	loss	function:

• We	adapt	the	branch-and-bound	algorithm	with	guessing	technique	of	McTavish	et	al.	[4]	

to	support	weighted	samples.

Approach	1:	Direct	Approach
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Let																																																																										,	find	decision	tree							such	that:

[4]	Fast	Sparse	Decision	Tree	Optimization	via	Reference	Ensembles.	McTavish	et	al.	(AAAI	2022)	



Theoretical	Guarantees
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Limitation	of	Direct	Approach

• In	decision	tree	optimization,	evaluation	of	the	objective	is	performed	repeatedly.

• Recall	the	objective	function:

• Computing	the	objective	function	requires	computing	the	inner	product	of	weights	

and	indicator	vector	of	misclassifications.
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Limitation	of	Direct	Approach	(cont.)

• Bit	operations	are	two	orders	of	magnitude	faster	than	standard	inner	product.
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(a)	Weighted	Loss	 (b)	Unweighted	Loss



Approach	2:	Data-duplication
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• Data	Duplication	Algorithm:

1. Normalize	weights.

2. Scale	the	normalized	weights	by	a	factor	𝑝.

3. Round	each	to	its	nearest	integer.

• Use	any	unweighted	optimal	decision	tree	

algorithm	on	the	duplicated	dataset.



Weighted	Dataset:

Approach	2:	Data-duplication	(Cont.)
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3.4 2.7 4.1    1.6

Normalized	Weights:												0.2881																	0.2288																0.3475																	0.1356

Scaled	Weights	(𝑝 = 20):				5.7627																	4.5763																6.9492																	2.7119

Rounded	Weights:																						6 5 7 3

Duplicated	Dataset:



Correctness	of	Data	Duplication

• Normalizing	and	scaling	weights	do	not	change	the	optimal	solution.

• Rounding	to	integers	can	affects	the	solution.	

• We	will	not	lose	substantial	performance	when	using	the	rounded	solution,	as	long	

as	we	did	not	change	the	weights	very	much	when	rounding.
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Correctness	of	Data	Duplication

• Normalizing	and	scaling	weights	do	not	change	the	optimal	solution.

• Rounding	to	integers	can	affects	the	solution.	

• We	will	not	lose	substantial	performance	when	using	the	rounded	solution,	as	long	

as	we	did	not	change	the	weights	very	much	when	rounding.

• When	the	ratio	of	the	biggest	weight	over	the	smallest	weight	is	large,	the	data	

duplication	approach	might	be	inefficient.
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Approach	3:	Weighted	Sampling

• Weighted	Sampling:	

• Given	an	arbitrary	number	𝑟,	we	sample	𝑆 = 𝑟 × 𝑁 data	points.

• The	probability	of	choosing		𝑥! is		
"!

∑"#$
% ""

.

• Use	any	unweighted	optimal	decision	tree	algorithm	on	the	sampled	dataset.

• With	high	probability,	we	will	not	lose	substantial	performance	when	using	

the	sampled	dataset!
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Experiments



Experiments:	Training	Time	vs.	Training	Accuracy

16



Experiments:	Training	Time	vs.	Test	Accuracy
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Experiments:	Sparsity	vs.	Training	Accuracy

18



Experiments:	Sparsity	vs.	Test	Accuracy
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How	Can	Our	Approach	be	Used	for	Policy	Making?

• Lalonde:	a	labour market	experiment	in	which	participants	were	randomized	

between	treatment	(on-the-job	training	lasting	between	nine	months	and	a	year)	

and	control	groups.	

• We	use	MALTS	model	[5]	to	estimate	the	missing	outcome	by	matching.
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[5]	MALTS:	Matching	After	Learning	to	Stretch.	Parikh	et	al.	(JMLR	2022)	



Conclusion
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Our	contributions	are:

✶ We	suggest	an	effective	approach	to	directly	optimize	the	weighted	loss	function.

✶ To	improve	scalability,	we	transform	weights	to	integer	values	and	use	data	

duplication	to	transform	the	weighted	decision	tree	optimization	problem	into	

an	unweighted	counterpart.

✶ To	scale	to	much	larger	datasets,	we	suggest	a	randomized	procedure	that	

samples	each	data	point	with	a	probability	proportional	to	its	weight.

✶ We	present	theoretical	guarantees	on	the	quality	of	proposed	methods.

Code	and	Datasets:	https://github.com/ubc-systopia/gosdt-guesses



Experiments:	Sample	Size	vs.	Training	Accuracy
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