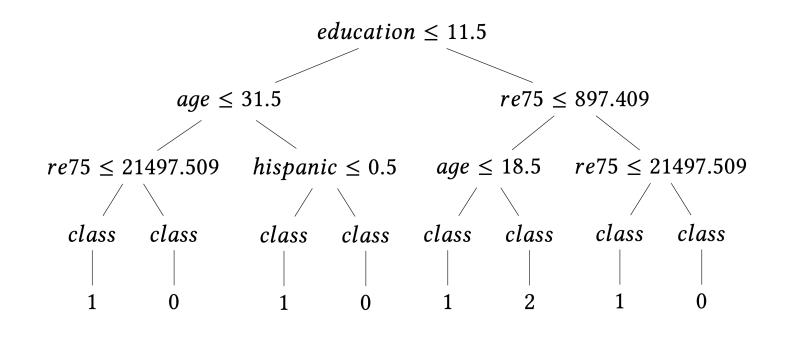
Fast Optimization of Weighted Sparse Decision Trees for use in Optimal Treatment Regimes and Optimal Policy Design

Ali Behrouz, Mathias Lécuyer, Cynthia Rudin, Margo Seltzer

AIMLAI @ CIKM 2022

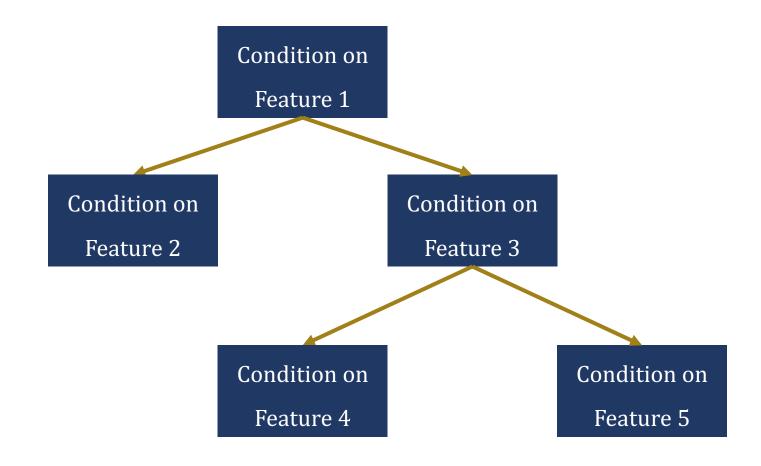
Decision Trees and Interpretability

- Decision trees are a family of interpretable models.
- What about accuracy?



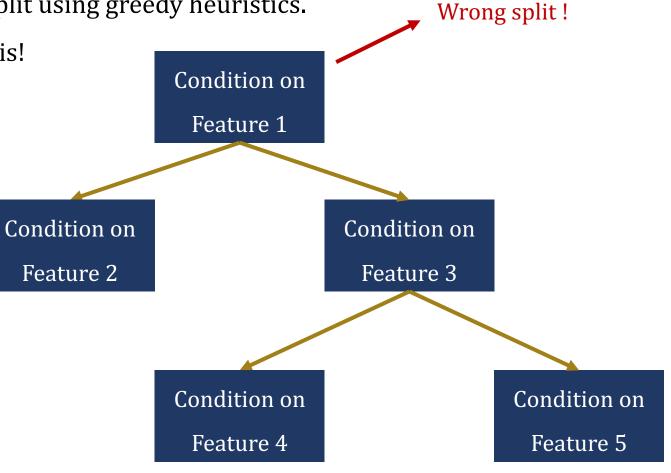
Greedy Algorithms for Decision Trees

• Old fashioned decision tree algorithms split using greedy heuristics.



Greedy Algorithms for Decision Trees

- Old fashioned decision tree algorithms split using greedy heuristics.
- Optimal decision tree models don't do this!



- How to find the right decision tree?
- Optimize an objective over all possible decision trees!

Let $\mathcal{L}(t, \tilde{\mathbf{x}}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}[y_i \neq \hat{y}_i^t]$, find decision tree t such that: minimize $\mathcal{L}(t, \tilde{\mathbf{x}}, \mathbf{y})$, s.t. depth $(t) \leq d$

[1] Learning optimal decision trees using caching branch-and-bound search. Aglin et al. (AAAI 2020)

- How to find the right decision tree?
- Optimize an objective over all possible decision trees!

Let $\mathcal{L}(t, \tilde{\mathbf{x}}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}[y_i \neq \hat{y}_i^t]$, find decision tree *t* such that:

minimize $\mathcal{L}(t, \tilde{\mathbf{x}}, \mathbf{y})$, s.t. depth $(t) \leq d$

[1] Learning optimal decision trees using caching branch-and-bound search. Aglin et al. (AAAI 2020)

We do not know the

optimal depth!

- How to find the right decision tree?
- Optimize an objective over all possible decision trees!

Let $\mathcal{L}(t, \tilde{\mathbf{x}}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}[y_i \neq \hat{y}_i^t]$, find decision tree *t* such that:

minimize $\mathcal{L}(t, \tilde{\mathbf{x}}, \mathbf{y})$, s.t. depth $(t) \leq d$

Let $\mathcal{L}(t, \tilde{\mathbf{x}}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}[y_i \neq \hat{y}_i^t]$, find decision tree *t* such that:

$$\begin{array}{ccc} \underset{t}{\text{minimize}} & \mathcal{L}(t, \tilde{\mathbf{x}}, \mathbf{y}) + \lambda H_t \\ & &$$

[1] Learning optimal decision trees using caching branch-and-bound search. Aglin et al. (AAAI 2020)

[2] Optimal sparse decision trees. Hu et al. (Neurips 2019)

[3] Generalized and scalable optimal sparse decision trees. Lin et al. (ICML 2020)

- How to find the right decision tree?
- Optimize an objective over all possible decision trees!

Let $\mathcal{L}(t, \tilde{\mathbf{x}}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}[y_i \neq \hat{y}_i^t]$, find decision tree *t* such that:

minimize $\mathcal{L}(t, \tilde{\mathbf{x}}, \mathbf{y})$, s.t. depth $(t) \le d$

Let $\mathcal{L}(t, \tilde{\mathbf{x}}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}[y_i \neq \hat{y}_i^t]$, find decision tree *t* such that:

$$\begin{array}{ccc} \underset{t}{\text{minimize}} & \mathcal{L}(t, \tilde{\mathbf{x}}, \mathbf{y}) + \lambda H_t \\ & &$$

[1] Learning optimal decision trees using caching branch-and-bound search. Aglin et al. (AAAI 2020)

[2] Optimal sparse decision trees. Hu et al. (Neurips 2019)

[3] Generalized and scalable optimal sparse decision trees. Lin et al. (ICML 2020)

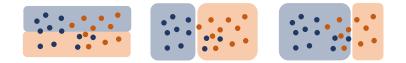
Harder to solve!

Branch & Bound Algorithm and its Limitations

- Start with the full dataset and a majority class label.
- Iteratively split it into subsets using each feature.
- Use some computational tricks to save time.

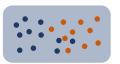
Branch & Bound Algorithm and its Limitations

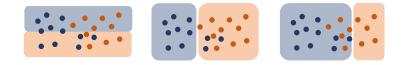
- Start with the full dataset and a majority class label.
- Iteratively split it into subsets using each feature.
- Use some computational tricks to save time.



Branch & Bound Algorithm and its Limitations

- Start with the full dataset and a majority class label.
- Iteratively split it into subsets using each feature.
- Use some computational tricks to save time.





* These algorithms are slow due to continuous features and convergence of bounds.

Guessing Techniques

• McTavish et al. have addressed these limitations.

Let $\mathcal{L}(t, \tilde{\mathbf{x}}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}[y_i \neq \hat{y}_i^t]$, find decision tree t such that: minimize $\mathcal{L}(t, \tilde{\mathbf{x}}, \mathbf{y}) + \lambda H_t$ s.t. depth $(t) \leq d$

- Use a black box reference model to inform the search!
 - 1. Threshold guessing
 - 2. Lower bound guessing
 - 3. Depth bound guessing

How to Incorporate Weights?

- These algorithms **cannot** handle weighted data samples!
- Existing techniques **cannot** produce policies that incorporate inverse propensity weighting on individual data points!
- Example: In policy design, Imbalanced datasets, fairness, treatment regimes, different cost of misclassification, etc.

How to Incorporate Weights? (Cont.)

- We present three algorithms for efficient sparse weighted decision tree optimization:
 - ***** Directly optimize the weighted loss function,
 - ***** Data duplication,
 - ***** Weighted sampling.

Approach 1: Direct Approach

• Directly optimize the weighted loss function:

Let
$$\mathcal{L}_{\mathbf{w}}(\mathcal{T}, \tilde{\mathbf{x}}, \mathbf{y}) = \frac{1}{\sum_{i=1}^{N} w_i} \sum_{i=1}^{N} \mathbb{1}[y_i \neq \hat{y}_i^{\mathcal{T}}] \times w_i$$
, find decision tree \mathcal{T} such that:
minimize $\mathcal{L}_{\mathbf{w}}(\mathcal{T}, \tilde{\mathbf{x}}, \mathbf{y}) + \lambda H_{\mathcal{T}}$ s.t. depth $(\mathcal{T}) \leq d$

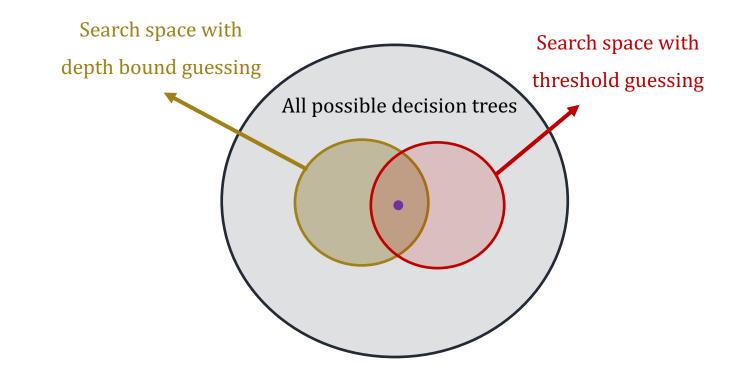
• We adapt the branch-and-bound algorithm with guessing technique of McTavish et al. [4] to support weighted samples.

Theoretical Guarantees

- Guessing Techniques:
 - 1. Threshold guessing
 - 2. Lower bound guessing
 - 3. Depth bound guessing

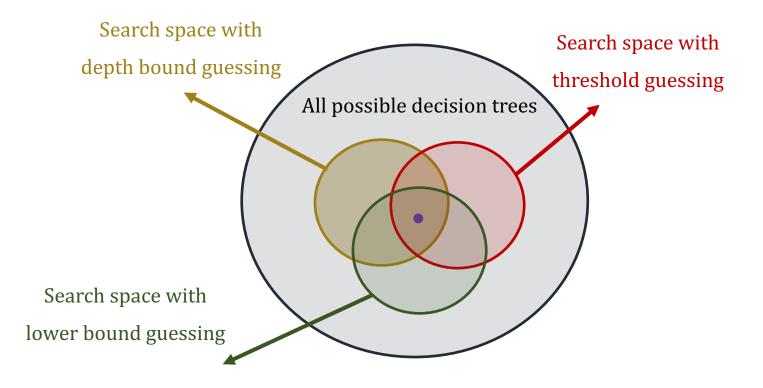
Theoretical Guarantees

- Guessing Techniques:
 - 1. Threshold guessing
 - 2. Lower bound guessing
 - 3. Depth bound guessing



Theoretical Guarantees

- Guessing Techniques:
 - 1. Threshold guessing
 - 2. Lower bound guessing
 - 3. Depth bound guessing



Limitation of Direct Approach

- In decision tree optimization, evaluation of the objective is performed repeatedly.
- Recall the objective function:

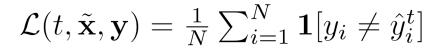
$$\mathcal{L}_{\mathbf{w}}(\mathcal{T}, \tilde{\mathbf{x}}, \mathbf{y}) = \frac{1}{\sum_{i=1}^{N} w_i} \sum_{i=1}^{N} \mathbb{1}[y_i \neq \hat{y}_i^{\mathcal{T}}] \times w_i$$

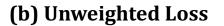
• Computing the objective function requires computing the inner product of weights and indicator vector of misclassifications.

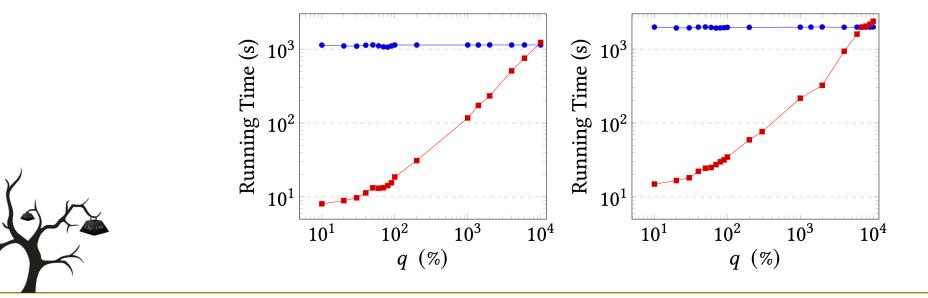
Limitation of Direct Approach (cont.)

• Bit operations are two orders of magnitude faster than standard inner product.

$$\mathcal{L}_{\mathbf{w}}(\mathcal{T}, \tilde{\mathbf{x}}, \mathbf{y}) = \frac{1}{\sum_{i=1}^{N} w_i} \sum_{i=1}^{N} \mathbb{1}[y_i \neq \hat{y}_i^{\mathcal{T}}] \times w_i$$







Approach 2: Data-duplication

- Data Duplication Algorithm:
 - 1. Normalize weights.
 - 2. Scale the normalized weights by a factor *p*.
 - 3. Round each to its nearest integer.
- Use any unweighted optimal decision tree algorithm on the duplicated dataset.

Algorithm 1: Data Duplication

```
Input :Dataset x, y and weights w, duplication factor p < 100

Output:Duplicated dataset \tilde{X}, \tilde{y}

1 \tilde{X} \leftarrow \emptyset; \tilde{y} \leftarrow \emptyset;

2 Define \tilde{w}_i = \operatorname{round} \left( p \cdot \left( \frac{w_i}{\sum_{i=1}^N w_i} \right) \right);

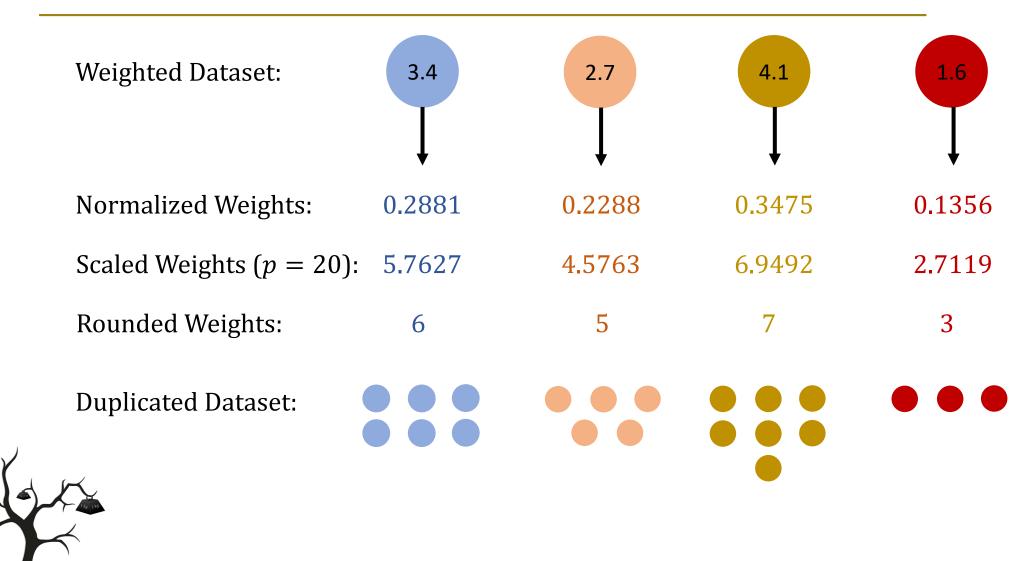
3 for x_i \in \mathbf{x} do

4 for i = 1, 2, \dots, \tilde{w}_i do

5 \left[ \begin{array}{c} \tilde{X} \leftarrow \tilde{X} \cup \{x_i\};\\ \tilde{y} \leftarrow \tilde{y} \cup \{y_i\}; \end{array} \right];

7 return \tilde{X}, \tilde{y}
```


Approach 2: Data-duplication (Cont.)



Correctness of Data Duplication

- Normalizing and scaling weights do not change the optimal solution.
- Rounding to integers can affects the solution.
- We will not lose substantial performance when using the rounded solution, as long as we did not change the weights very much when rounding.

Correctness of Data Duplication

- Normalizing and scaling weights do not change the optimal solution.
- Rounding to integers can affects the solution.
- We will not lose substantial performance when using the rounded solution, as long as we did not change the weights very much when rounding.

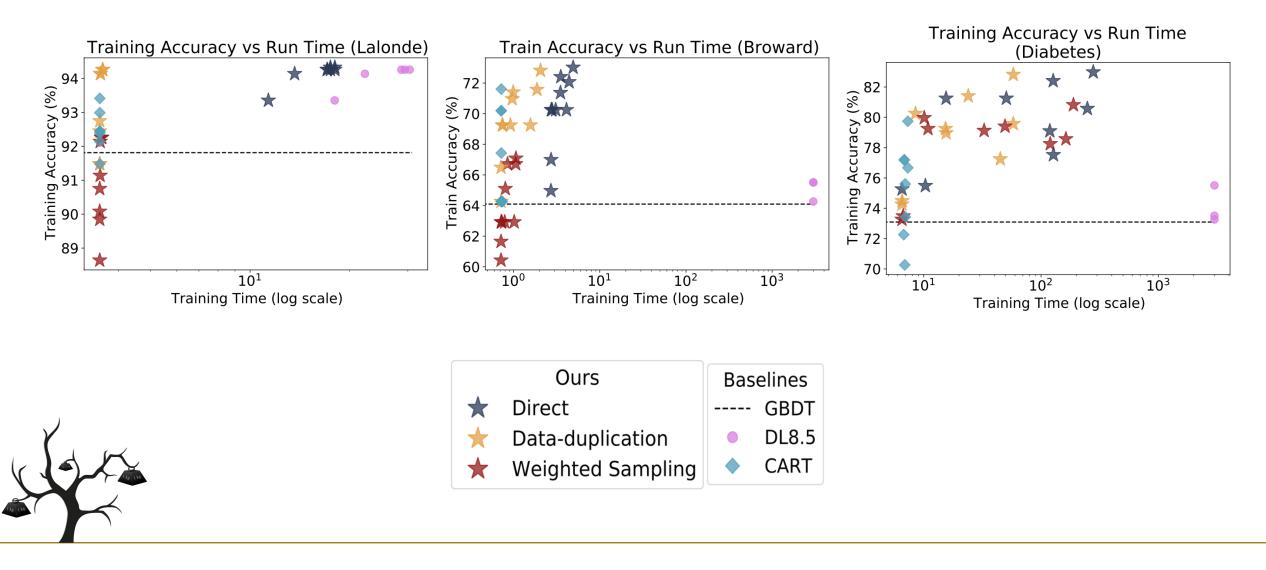
• When the ratio of the biggest weight over the smallest weight is large, the data duplication approach might be inefficient.

Approach 3: Weighted Sampling

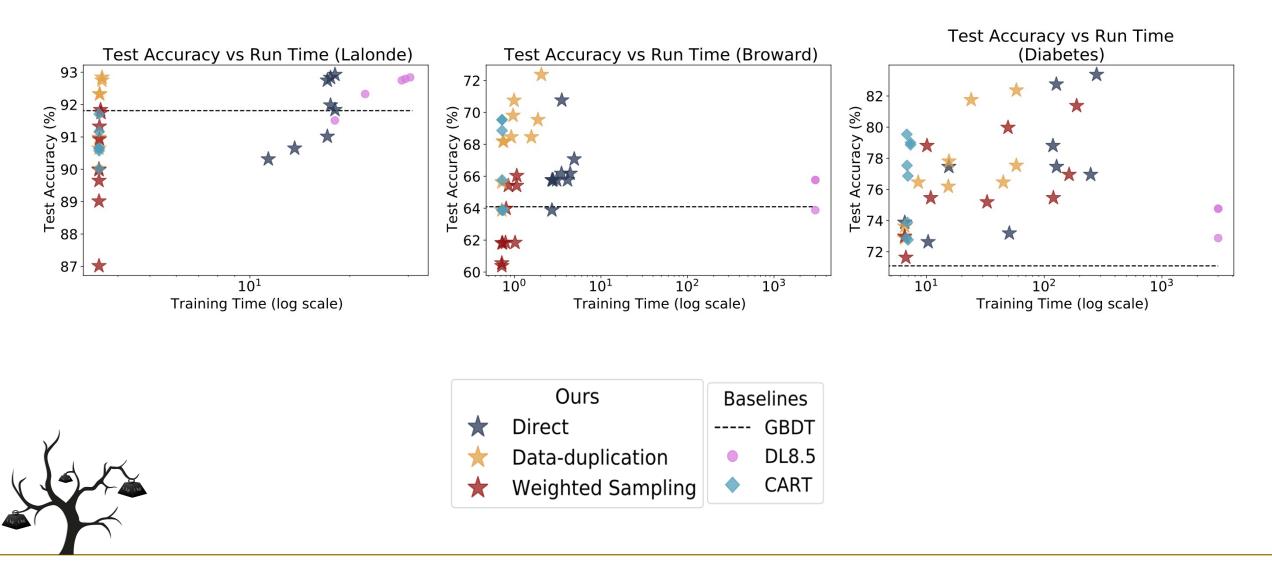
- Weighted Sampling:
 - Given an arbitrary number r, we sample $S = r \times N$ data points.
 - The probability of choosing x_i is $\frac{w_i}{\sum_{k=1}^N w_k}$.
- Use any unweighted optimal decision tree algorithm on the sampled dataset.
- With high probability, we will not lose substantial performance when using the sampled dataset!

Experiments

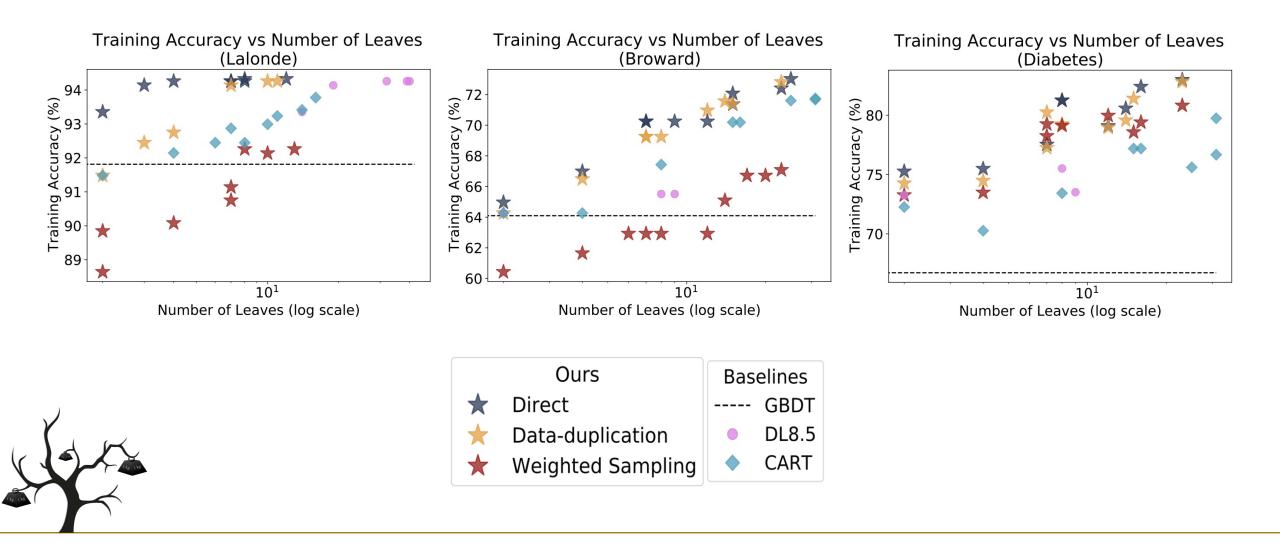
Experiments: Training Time vs. Training Accuracy



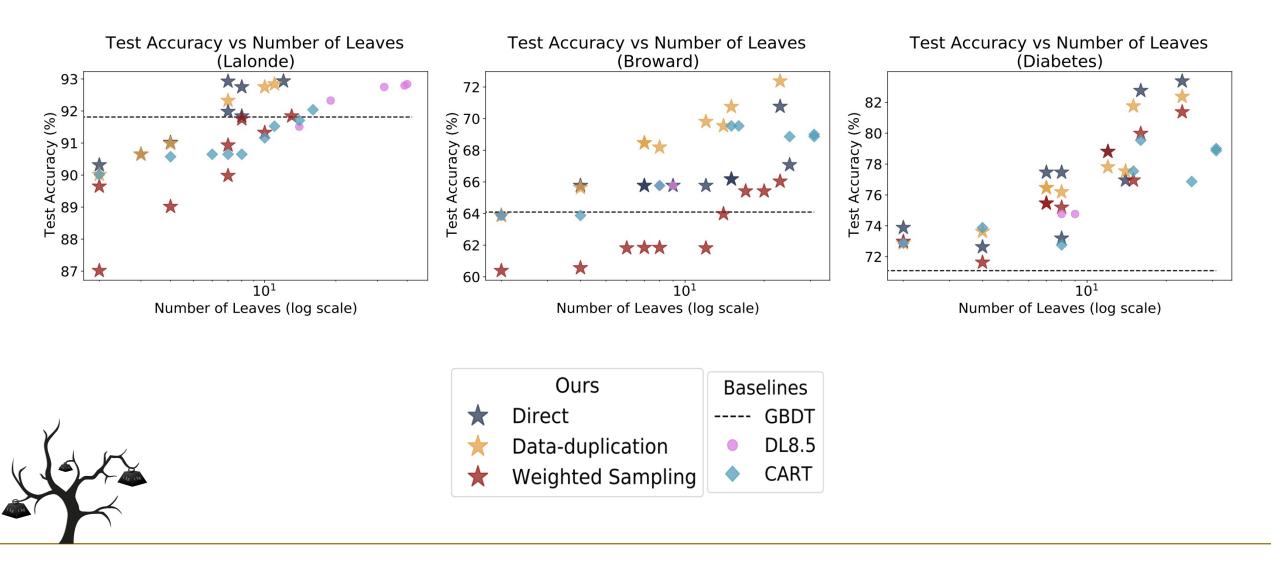
Experiments: Training Time vs. Test Accuracy



Experiments: Sparsity vs. Training Accuracy



Experiments: Sparsity vs. Test Accuracy



How Can Our Approach be Used for Policy Making?

- Lalonde: a labour market experiment in which participants were randomized between treatment (on-the-job training lasting between nine months and a year) and control groups.
- We use MALTS model [5] to estimate the missing outcome by matching.



[5] MALTS: Matching After Learning to Stretch. Parikh et al. (JMLR 2022)

Conclusion

Our contributions are:

- * We suggest an effective approach to directly optimize the weighted loss function.
- To improve scalability, we transform weights to integer values and use data duplication to transform the weighted decision tree optimization problem into an unweighted counterpart.
- * To scale to much larger datasets, we suggest a randomized procedure that samples each data point with a probability proportional to its weight.
- ★ We present theoretical guarantees on the quality of proposed methods.

Code and Datasets: https://github.com/ubc-systopia/gosdt-guesses

Experiments: Sample Size vs. Training Accuracy

