
Analyzing the Explanation and Interpretation Potential
of Matrix Capsule Networks

Andrei Bondarenko1, Saja AL-Tawalbeh2[0000−0001−6278−0768],
José Oramas2[0000−0002−8607−5067]

1 University of Antwerp
2 University of Antwerp, imec-IDLab

Abstract. The interest in capsule networks, recently proposed as an alternative to
convolutional neural networks (CNNs), has seen a steady increase in recent years.
This is mainly due to their ability to recognize variations in pose and deforma-
tions while requiring less training data compared to classic convolutional neural
networks (CNNs). In addition, from an explainability perspective, this novel archi-
tecture also shows the potential of being more explainable and interpretable due to
its hierarchical, internal representation of learned concepts and its ability to encode
class characteristics as pose parameters in the class capsules. However, existing
work has mainly focused on studying the first capsule network architecture, while
newer architectures, such as Matrix Capsules with EM-Routing, have not received
the same attention. Here we conduct a preliminary study of the inner-workings
of Matrix Capsule architectures with EM-Routing and perform an analysis of the
aspects that differentiate it from regular CNNs. At the same time, we focus our
analysis on their interpretability and explainability properties.

Keywords: Capsule Interpretation · Capsule Networks · Path Identification

1 Introduction

Since the deep learning revolution rocked the computer vision community [29,9,20],
convolutional (deep) neural networks (CNNs) have been widely and successfully applied
to solve many complex computer vision tasks. However, more recently Hinton et al
[15] have argued that the max-pooling operation used by these CNNs throws away
important information about the precise position and orientation of detected features,
which they argue could be used to learn spatial part-whole relationships to make learning
equivariant features possible using simpler networks. To improve on these shortcomings
a novel neural network building block, called a capsule, was proposed. This block is
claimed to be invariant to the pose (position, size, orientation) of the detected features.
In a later work, Sabout et al. [27] proposed an iterative algorithm that aims to solve the
problem of learning compositional informations. More specifically, linking parts, i.e.,
features learned by lower-level capsules, to whole components, i.e., features learned by
higher-level capsules.

In recent years, the domain of explainable artificial intelligence (XAI) [1] has been
gaining popularity as machine learning models have been shown to be biased towards

2 Bondarenko et al.

dominant classes/features in a given particular dataset [8]. This bias can exist in many
shapes and forms [23], and as a result, is often overlooked and undetected until it becomes
a problem. As a result, a great deal of research has been devoted to trying to interpret
the representations learned by classic deep architectures [30,6,35] and explaining their
predictions [36,34,10,12]. Since capsule networks are a novel architecture they have not
received the same in-depth dissection compared to their more standard CNN counterparts.
This is quite worrisome when noting their application in medical contexts and other
critical domains is already being explored [3,17,25,2].

The objective of this work is to study the internal feature representations learned by
capsule networks and how higher and lower-level features are related with each other by
the routing algorithm. This work aims at providing a preliminary analysis on the more
recent matrix capsule architecture introduced by [16] which is rarely addressed in the
literature.

To this end, this work studies the two components that differentiate the matrix
capsule architecture from regular CNNs, i.e., the matrix capsules and the expectation-
maximization algorithm. By applying perturbations to the pose matrices of the matrix
capsules in the class capsule layer, we attempt to verify whether the different elements of
the pose matrix indeed represent some high-level feature. Next, we verify whether there is
any correlation between the activation of certain capsule types and the classes of interest.
Finally, the part-whole assignments made by the routing algorithm are scrutinized by
analyzing the internal routing coefficients and attempting to verify whether some kind of
path through the network can be observed when focusing on a more informative subset
of capsules.

2 Related work

Existing work related to interpreting capsule networks and explaining their predictions
can be categorized into three categories. (i) Works that study the core characteristics of
capsule networks and their implications w.r.t. explainability and/or interpretation. (ii)
Works that evaluate the explanation and interpretation of capsule network predictions
within specific research domains, e,g., biology and medicine. (iii) Finally, works that
propose novel architectures that extend or incorporate capsule networks and their routing
algorithms with the goal of improving explainability and/or interpretation.

In category (i), [28] analyze the learned features and explanation capabilities of
class capsules on the MNIST dataset [21]. There the effect on reconstructed inputs
was observed as parameters in the class capsule were modified. In addition, it analyzed
the likelihoods predicted by the class capsules for misclassified samples and show that
in all cases the correct class has the second highest likelihood. When performing a
reconstruction according to the class predicted with the second highest likelihood, they
observe that the reconstructions are similar to the ones for the class with the highest
likelihood. They argue that this similarity in reconstruction can be used as an explanation
for the misclassification of said samples. Our work further buid on this by observing
the difference in reconstruction when altering the parameters of the pose matrix in
matrix class capsules. One of the experiments performed by Lin et al. [22] shows that
capsule networks can produce data representation with interesting attributes. To this

Analyzing the Explanation and Interpretation Potential of Matrix Capsule Networks 3

end, they synthesize a test dataset with known underlying 2D manifolds spanned by
geometric translations. They then collect the data representations of this test set in the
intermediate layers of a capsule network and a regular CNN. When visualizing the tSNE
R2 embeddings of these representations, they observe that the embeddings of the capsule
networks align much better with the internal 2D manifold than those of the regular CNNs.
Bhullar A. [7] explores the interpretation of the concepts learned by intermediate and final
capsule layers by visualizing the routing path through a convolutional capsule network
based on the original architecture [27]. Recent efforts have focused on a deeper study on
the learned representation and the hierarchical relationships encoded in CapsNets. On the
one hand, [5] conducted a systematic study towards assessing the interpretability of these
type of networks. It extended the typical perturbation analysis and extracted the relevant
features that define internal paths linking inputs and outputs. Moreover, a methodology is
proposed for assessing the existence of part-whole relationships in the internally-encoded
representation. Their results suggest that the representation internally encoded in the
network is not disentangled. On the other hand, [24] argued that instead of relying on
individual neurons to detect simple features like edges or curves, the capsule network
aims to recognize higher-level structures and objects by learning capsules that encode
the presence and properties of those entities. Therefore, the existence of a part-whole
hierarchy in capsule networks is explored through experiments involving parse tree
analysis and measuring the response between the parts and the whole. Similar to these
efforts, we aim at the analysis of the representation internally encoded in a capsule-based
architecture. Different from them, we focus our analysis on the capsule architecture
variant based on EM-Routing [16].

In category (ii), [18] show that when using capsule networks for protein structure
classification and prediction the prediction vectors encode valuable information about
the protein’s structure. They show that by modifying the input and observing the changes
in the prediction vector it is possible to see which parts of the input the network considers
important for classification. In the context of brain tumor classification via radiomics
analyses, [4] used input reconstruction after modifying features in the final capsule layer
and activation maximization, i,e., finding an input that can maximize the activation of
a specific output capsule, to interpret the features learned by capsule networks. They
show that the features learned by the network are similar to hand-crafted features used
in radiomics.

In category (iii), [13] proposes a novel architecture called graph capsule networks,
where the routing part of regular capsule networks is replaced with a multi-head attention-
based graph pooling approach. Eliminating the routing part of capsule networks allows
them to reuse existing gradient-based explanation methods that were originally created
for regular CNNs. [32] combine the capsule network architecture with a trainable multi-
head attention layer. They then propose explanation and interpretation methods (they
refer to these as local and global interpretation, respectively), based on the routing
weights of the capsule network, that yield human-understandable interpretation results.
One of our experiments is similar in the sense that we also attempt to explain the
predictions made by a capsule network based on the routing weights of the network. [19]
focus on the interpretability aspects provided by class capsules, i,e., capsules found in the
last layer of classification capsule networks. They propose a new architecture that aims

4 Bondarenko et al.

to address two limitations they identified in said class capsules. The first limitation being
that some instantiation parameters of class capsules represent concepts that are irrelevant
to classification. The second limitation is that some instantiation parameters within a
single class capsule encode overlapping concepts. They address these limitations by
combining capsule networks with class-supervised disentanglement learning, which aims
to disentangle the latent feature space of a capsule into two complementary subspaces,
i,e., class-relevant and irrelevant subspaces. Following this method it is possible to
explain the model predictions using distinct, class-relevant concepts. [31] studies the
effect of guiding lower-level capsules to represent specific properties by incorporating
attribute embeddings into the primary capsule layer. These attributes are then learned by
using a binary value, i,e., whether the attribute is present, as the target for the attribute
dimensions. This learning is guided by extending the capsule network loss function
with an attribute loss function, which is the L1 Loss between the attribute dimensions’
values and the corresponding binary target values. A novel architecture was proposed
to detect facial action units considering multiple views and model the variation at once
[26]. They reconstruct unmasked capsules to explain/model the variation in the dataset.
Therefore, they explain the learned representation by visualization these capsules. In our
experiments, we proposed masking to verify the relevant path through the network.

An important note to make is that most of the related efforts have focus their analysis
in the capsule-based architecture defined by [27]. Different from that, our work focuses
on matrix capsules [16].

3 Capsule Networks

This section presents an overview both capsule network architectures (CapsNets) [27,16]

3.1 Capsules and routing-by-agreement

Traditional CNNs are built up of neurons. In a convolutional layer a set of weights,
known as a kernel, is replicated across the input space its corresponding layer. As a
result, the output of a convolutional layer is a two-dimensional matrix where each
element is the result of a linear combination of a part of the input space with the weights
from the kernel. This two-dimensional matrix is often called a feature map and the kernel
can thus be seen as a replicated feature detector. A nice property that convolutional
layers give us is translational equivariance, e.g., the position of an object should not be
fixed in order to be detected. A convolutional layer is then often followed by a pooling
layer that downsamples the output in order to summarize the presence of features
in a region of the feature map. A commonly used pooling operation is max-pooling,
which simply summarizes a region as its highest activation. This operation results in
(local) translational invariance, i,e., ensuring that the output of a CNN remains the same
regardless of how the input is shifted.

Given the side-effect of pooling layers of throwing away potentially valuable informa-
tion, [15] argue that this method my not be most optimal way of learning representations
for visual recognition tasks, such as facial identity recognition, that require knowledge
of the precise spatial relationships. Instead, they argue that neural networks should use

Analyzing the Explanation and Interpretation Potential of Matrix Capsule Networks 5

capsules, i,e., a group of neurons that learns to recognize a certain visual feature, that
perform some internal computations on their inputs and encapsulate the results into a
small, highly informative vector of outputs. The probability of a feature being detected
is then encoded as the length of the output vector, while its pose, also referred to as the
feature’s instantiation parameters, is encoded by the direction in which the vector points.

[27] provide a straightforward implementation of this concept where capsules are
represented as vectors. Additionally, they propose an iterative algorithm for linking
lower-level capsules to higher-level ones. The total input s j of a capsule is a weighted
sum of prediction vectors û j|i.

s j = ∑
i

ci jû j|i (1)

These prediction vectors are produced by multiplying the output of the capsules in
the layer below ui by a learned weight matrix Wi j specific to each pair of capsules in
adjacent layers:

û j|i =Wi jui (2)

The coupling coefficients ci j in Equation 1 are determined as part of the iterative routing
algorithm where Ωl is the set of capsules that forms layer l. The total input s j is then
squashed, using the non-linearity depicted in Equation 3, to produce the output vector v j
of the capsule. This ensures that the vectors’ length is normalized to the range [0,1].

v j =
||s j||2

1+ ||s j||2
s j

||s j||
(3)

3.2 Matrix capsules and EM-routing

Building on these ideas, [16] later proposed improvements to the capsules concept in
the form of matrix capsules together with a new non-linear routing procedure based on
the expectation–maximization algorithm. This new form of capsules differs in that it is
no longer represented by a single vector. Matrix capsules have two components, a 4x4
pose matrix M, and an activation probability a. This improves on the previous version of
capsules in the following ways:

1. Using the length of the pose vector to model the probability that an entity is present
required an unprincipled non-linearity (Equation 3) to be used. The new non-linear
routing procedure minimizes a more sensible objective function.

2. The new agreement measure, negative log variance of a Gaussian cluster, doesn’t
saturate at 1 like the cosine of the angle between two pose vectors. This makes it
better at discerning between good and very good agreement.

3. By representing the pose as a vector of length n the learned transformation matrices
needed to have n2 parameters. By switching to a matrix representation of n elements
for the pose the number of parameters needed for the transformation matrices is also
reduced to n.

6 Bondarenko et al.

For this formulation, we again denote the set of capsules that form layer L as ΩL. The
pose matrix Mi of capsule i ∈ ΩL is used to cast a vote Vi j for the pose matrix M j of
capsule j ∈ ΩL+1. This is done by multiplying Mi with a learned transformation matrix
Wi j.

Vi j = MiWi j (4)

The set of all votes V is used together with the activation probability vector a as input to
the non-linear routing procedure. The output of this procedure is the set of pose matrices
M and activation probability vector a for layer ΩL+1. Parameters βa and βu are learned
discriminatively and parameter λ denotes the inverse temperature which increases
every iteration with a fixed schedule. The inverse temperature is a term borrowed
from the reinforcement learning field where it is often used for a factor that controls
the exploration-exploitation trade-off in optimization algorithms. In the EM-Routing
algorithm, it serves a similar purpose in that it forces the routing algorithm to focus
more on the more promising capsules (exploitation) in later iterations. The EM routing
algorithm is explicit in the fact that it is based on the EM clustering algorithm to assign
lower-level capsules to higher-level ones.

4 Experiments

Class Capsules

10
5

Convolutional
Capsules

32

1

Convolutional
Capsules

32

3

Primary
Capsules

32

3

32

Convolutional
ReLU

1

Classification

Reconstruction

28

Dense
ReLU

51
2

10
24

Dense
ReLU

78
4

Dense
Sigmoid

28

Fig. 1. Architecture of the capsule network under study. The top half of the figure depicts the
classification part of the network, while the bottom half represents the reconstruction part. The
classification part consists of a regular convolutional layer, a primary capsule layer, two convolu-
tional capsule layers, and a fully connected class capsule layer. The reconstruction part consists of
3 dense layers.

The experiments in this report focus on the matrix capsule architecture presented in [16]
and its performance on the MNIST dataset [21]. More concretely, the experiments focus
on the two components that differentiate the matrix capsule architecture from regular

Analyzing the Explanation and Interpretation Potential of Matrix Capsule Networks 7

CNNs, i,e., the matrix capsules and the part-whole associations made by the routing
algorithm. We based our experiments on an open-source PyTorch implementation of
matrix capsules available at [33].

We also want to emphasize that, as other works have noted [11], we experienced
difficulties in reproducing and achieving the same performance as the original paper on
matrix capsules [16].

4.1 Architecture

The architecture under study is depicted in the top half of Figure 1. It starts with a regular
convolutional layer with a 5x5 kernel, 32 channels, a stride equal to 2, and a ReLU
activation function. This layer is followed by the primary capsule (PrimCap) layer, which
has 32 capsule types. This layer performs a learned linear transformation to determine
the pose matrix and activations for each of the primary capsules. From the PrimCap
layers onward routing takes place between layers. The number of iterations of the routing
algorithm that were performed was fixed at 2. The PrimCap layer is followed by two
convolutional capsule (ConvCap) layers. Both have a kernel size of 3x3 and 32 capsule
types. They only differ in their stride where the first ConvCap layer has a stride of 2 and
the second ConvCap layer has a stride of 1. The last ConvCap layer is connected to a
capsule layer which contains one capsule per output class. We refer to this layer as the
class capsule (ClassCap) layer.

For some of the experiments this network was extended with a decoder similar to the
one used with the first capsule architecture proposed by Sabour et al. [27]. The decoder is
depicted on the bottom half of Figure 1. It features three fully connected layers, with the
first two using the ReLU activation function and having sizes 512 and 1024, respectively.
The final layer of the decoder uses the sigmoid activation function and is of size 784,
which is equal to the size of a flattened input image. The output of the final layer can then
be reshaped to form a reconstructed input image. By adding this decoder the network is
also trained to reconstruct the input based on the elements of the class capsules’ pose
matrices. These reconstructions can then be used to verify which features are encoded
by the elements of the pose matrices.

4.2 Training

The MNIST dataset provides predefined train and test sets, with each having 60K and
10K samples, respectively. Additionally, 10% (6K samples) of the training set was used
as the validation set. Training duration was set to 30 epochs in batches of 64 and 256
samples for the training and test, respectively.

To gauge the impact of adding a decoder to the network on the classification perfor-
mance, the network was trained twice. Once without the decoder part and a second time
with the decoder extension. For training the network without the decoder the spread loss
was used. The spread loss maximizes the gap between the activation of the target class
at and the activation of other classes. This loss is computed using Equation 5 where m is
the minimal margin between class activations.

Li = (max(0,m− (at −ai)))
2,L = ∑

i̸=t
Li (5)

8 Bondarenko et al.

For training the network with the decoder the total loss was set to equal the sum of
the spread loss and a scaled reconstruction loss. The reconstruction loss is simply the
mean squared error between the actual and the reconstructed input. It is scaled down
(by a factor of 5e−4) in order to prevent it from dominating the training process. The
performance of both final models was then measured using the test set. The results have
been summarized in Table 1. The final decoder model was then used for the rest of the
experiments. We can see that adding the decoder impacts the classification performance
slightly, however, not to a degree that is detrimental to the rest of the experiments.

Table 1. Best model performance in terms of test set accuracy of the model trained with and
without the decoder attached.

Model Decoder No Decoder
Accuracy 97% 98%

4.3 Pose matrix

The first aspect of matrix capsules is the pose matrix. Hinton et al. [16] call it that
because they argue that the network could learn to encode the relationship between an
entity and the viewer, i.e., the pose, using said matrix. By perturbing the elements of
this pose matrix and observing how the reconstruction of a digit changes we can get a
sense of what is encoded by each element. To this end a sample was taken for each class
and fed to the classification part of the network to get a predicted pose matrix. Each
element of this pose matrix was then perturbed independently by intervals of 0.05 in
the range [−0.3,0.3]. We chose this interval and step size in order to get results that
are comparable to the dimension perturbation reconstructions done in [27], where a the
same step size was used over a smaller range, i.e., [−0.25,0.25]

Similar to the vector representation introduced in [27] we observed that some ele-
ments encode combinations of global variations while others encode localized parts of
digits. We show 3 examples of these localized parts in Figure 2, where the top row shows
a change in the curvature of the top part of the digit 7, the middle row shows variation in
the length of the bottom curve of digit 5, and the bottom row shows how a parameter
controls how open or closed the top part of a digit 4 is. So the pose matrices do indeed
encode the configuration of features, but not necessarily a physical pose, as could be
inferred from the naming used for this element.

4.4 Activations

The second aspect of the matrix capsules that was studied is their internal activations. The
goal is to determine whether the activations alone could be used to explain the predictions
made by the network or to identify any capsule types that encoded discriminative
features, i.e., features that can be used to uniquely identify certain classes. To this end
we computed first order statistics (minimum, maximum, mean, and standard deviation)

Analyzing the Explanation and Interpretation Potential of Matrix Capsule Networks 9

P[
3,

1]

 = -0.30 = -0.25 = -0.20 = -0.15 = -0.10 = -0.05 = 0.00 = 0.05 = 0.10 = 0.15 = 0.20 = 0.25 = 0.30

P[
2,

2]

 = -0.30 = -0.25 = -0.20 = -0.15 = -0.10 = -0.05 = 0.00 = 0.05 = 0.10 = 0.15 = 0.20 = 0.25 = 0.30

P[
3,

2]

 = -0.30 = -0.25 = -0.20 = -0.15 = -0.10 = -0.05 = 0.00 = 0.05 = 0.10 = 0.15 = 0.20 = 0.25 = 0.30

Fig. 2. Examples of pose matrix perturbations that influence localized parts. Top row shows the
change in curvature of a 7’s top line. Middle row shows variation in length of a 5’s bottom curve.
Bottom row shows how a pose parameter controls how open or closed the top of a 4 is.

of the activations of each capsule type per class for each layer over the test set. By
plotting these class-specific statistics we can verify whether the activation range of a
given capsule types deviates strongly for a specific class. If a strong deviation is present
for a certain class, that could suggest that that capsule type encodes a feature that is
unique to that class. The results of this experiment are presented in Figures 3 through 6.
Each of the subplots in each of the figures shows the aggregated activation values when
processing samples belonging to a single class.

The activations of the ClassCaps at the end of the architecture, i.e., Figure 6, clearly
show that the class capsules each encode one of the classes because the mean activation
of a single class capsule is always the highest. However, as we move one step back
through the network and look at the activations in the second ConvCaps layer, i.e.,
Figure 5, we see that the activations are squeezed into a much tighter range. In addition,
the mean activation curves look very similar between the different classes. This makes
it hard to identify capsules that encode discriminating features. A similar observation
can be made for the earlier capsule layers, i.e. Figures 3 and 4. This suggests that the
activations of the matrix capsules on their own are not a good proxy for explaining
predictions made by the network.

This experiment did allow us to determine valid activation value ranges per capsule
type, which can be used in future experiments to ensure that any perturbations that
are made to these activation values remain within a valid range. For example, we can
see that most activation values do not go far beyond 0.5 so it would not make sense to
perform perturbations that go far beyond that value. Moreover, focusing on a significantly
narrower range would lead to an incomplete inspection of the representation space.

4.5 Routing coefficients

The final aspect of matrix capsules that differentiates them from regular CNNs is the
routing process, which produces routing coefficients in order to associate low-level
capsules to higher-level ones. As such, we can try to find a parse tree-like structure
[14,27] of capsules for each class capsule, by going backwards through the network and
following the connections between capsules with the highest routing coefficients. This
structure could then tell us which combination of low-level features form the conceptS

10 Bondarenko et al.

0 4 8 12 16 20 24 28 32
0.48

0.49

0.50

0.51

0.52
Class '0' Samples

0 4 8 12 16 20 24 28 32

Class '1' Samples

0 4 8 12 16 20 24 28 32

Class '2' Samples

0 4 8 12 16 20 24 28 32

Class '3' Samples

0 4 8 12 16 20 24 28 32

Class '4' Samples

0 4 8 12 16 20 24 28 32
0.48

0.49

0.50

0.51

0.52
Class '5' Samples

0 4 8 12 16 20 24 28 32

Class '6' Samples

0 4 8 12 16 20 24 28 32

Class '7' Samples

0 4 8 12 16 20 24 28 32

Class '8' Samples

0 4 8 12 16 20 24 28 32

Class '9' Samples

0.0 0.2 0.4 0.6 0.8 1.0
Capsule Type

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tiv

at
io

n

min max mean+std

Fig. 3. Minimum, maximum, and mean (+ standard deviation) activations per capsule type for the
PrimCaps layer. Each plot considers only the samples of one of the classes.

represented by the class capsule. Since the model we are studying, and as a result the
number of connections we need to consider for the parse tree, is quite large, we first try
to identify capsules that are more informative than others, i.e. those which contributed
the most to the classification result. To this end, push the training set through the network
and collect the values of the routing coefficients after the last routing iteration, for
each capsule layer in the network. Then, we compute the mean routing coefficient
over all samples, for each each pair of connected capsules. We use the variance of the
routing coefficients of connections originating from a lower-level capsule as a proxy for
importance. The intuition behind this is that capsules that have a similar mean routing
weight to each capsule in the next layer are less important since they are not casting
a distinct vote for a higher-level concept i.e., are remaining indecisive with their vote.
While a capsule with a higher variance in mean routing weight will have a more distinct
vote towards a single (or a subset of) capsule(s) in the next layer, thus influencing the
final classification result more. Once we had ranked the input capsules for each layer
in terms of their importance, we evaluate the classification performance, in terms of
accuracy, of the model while masking all but the top-k most important input capsules
in a layer. We performed the experiment for all top-i where i ∈ [1,n], with n being the
number of capsules in the layer. The range of experiments was performed for each layer
independently. The results of these experiments have been plotted in Figure 7, where
we can see the accuracy of the model in terms of the number of top-k most important
capsules left unmasked. We can see that the last two layers the top-50% most important
capsules provide the largest influx in performance, even nearing the performance of the
full model. For the first ConvCaps layer, the increase in performance is a little more
gradual. This aligns with the idea that the primary capsules, which serve as input to
the first ConvCaps layer, encode very low-level features that are shared more between
concepts encoded in the next layer. In later layers, the concepts get more refined and can
thus serve as more unique, defining features for concepts/classes in the next layer.

Analyzing the Explanation and Interpretation Potential of Matrix Capsule Networks 11

0 4 8 12 16 20 24 28 32
0.1

0.2

0.3

0.4

0.5
Class '0' Samples

0 4 8 12 16 20 24 28 32

Class '1' Samples

0 4 8 12 16 20 24 28 32

Class '2' Samples

0 4 8 12 16 20 24 28 32

Class '3' Samples

0 4 8 12 16 20 24 28 32

Class '4' Samples

0 4 8 12 16 20 24 28 32
0.1

0.2

0.3

0.4

0.5
Class '5' Samples

0 4 8 12 16 20 24 28 32

Class '6' Samples

0 4 8 12 16 20 24 28 32

Class '7' Samples

0 4 8 12 16 20 24 28 32

Class '8' Samples

0 4 8 12 16 20 24 28 32

Class '9' Samples

0.0 0.2 0.4 0.6 0.8 1.0
Capsule Type

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tiv

at
io

n

min max mean+std

Fig. 4. Minimum, maximum, and mean (+ standard deviation) activations per capsule type for the
first ConvCaps layer. Each plot considers only the samples of one of the classes.

Based on these results, we chose a threshold top-k for each layer and evaluated the
classification performance of the network when masking capsules in multiple layers.
For the ConvCaps1, ConvCaps2 and ClassCaps layers we chose the thresholds 5398,
668, and 217, respectively. Relatively speaking, this amounts to masking about 14%,
42%, and 58% of the capsules in each layer, respectively. These thresholds were chosen
in such a way that they were as small as possible while maximizing the classification
performance of the network when a mask with said k is applied to the respective layer. We
then tried all possible combinations of applying masks in multiple layers and evaluated
classification performance. The results of these experiments are summarized in Table 2.

0 4 8 12 16 20 24 28 32

0.30

0.35

0.40

0.45

0.50

Class '0' Samples

0 4 8 12 16 20 24 28 32

Class '1' Samples

0 4 8 12 16 20 24 28 32

Class '2' Samples

0 4 8 12 16 20 24 28 32

Class '3' Samples

0 4 8 12 16 20 24 28 32

Class '4' Samples

0 4 8 12 16 20 24 28 32

0.30

0.35

0.40

0.45

0.50

Class '5' Samples

0 4 8 12 16 20 24 28 32

Class '6' Samples

0 4 8 12 16 20 24 28 32

Class '7' Samples

0 4 8 12 16 20 24 28 32

Class '8' Samples

0 4 8 12 16 20 24 28 32

Class '9' Samples

0.0 0.2 0.4 0.6 0.8 1.0
Capsule Type

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tiv

at
io

n

min max mean+std

Fig. 5. Minimum, maximum, and mean (+ standard deviation) activations per capsule type for the
second ConvCaps layer. Each plot considers only the samples of one of the classes.

12 Bondarenko et al.

0 4 8

0.5

0.6

0.7

0.8

0.9

1.0

Class '0' Samples

0 4 8

Class '1' Samples

0 4 8

Class '2' Samples

0 4 8

Class '3' Samples

0 4 8

Class '4' Samples

0 4 8

0.5

0.6

0.7

0.8

0.9

1.0

Class '5' Samples

0 4 8

Class '6' Samples

0 4 8

Class '7' Samples

0 4 8

Class '8' Samples

0 4 8

Class '9' Samples

0.0 0.2 0.4 0.6 0.8 1.0
Capsule Type

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tiv

at
io

n

min max mean+std

Fig. 6. Minimum, maximum, and mean (+ standard deviation) activations per capsule type for the
ClassCaps layer. Each plot considers only the samples of one of the classes.

We can see that masking the inputs of the two last layers together, i.e., ConvCaps2
and ClassCaps, impacts the classification performance the most, while combinations,
where the inputs of the ConvCaps1 layer are masked, have a very minor difference
in performance compared to the same (sub-)model with without said mask. The sub-
model with all layer masks applied sees a total relative drop in performance of 5.89%,
compared to the original model. The fact that the model performance has not completely
deteriorated after masking about 20% of the total number of capsules in the network
suggests that this is a good step towards finding a method for determining the critical
routing paths through the network. A potential avenue to explore based on these results is
to focus on a single class and base the importance ranking of the capsules on the impact
on the classification performance of that class. This way we could potentially determine
a sub-model that contains all of the critical routing paths for a given class. The features
encoded by the capsules on this path could then be used to explain the predictions made
by the network.

5 Discussion & Conclusion

In this work, we conducted a preliminary study focusing on the three aspects that
differentiate matrix capsules with EM-routing from CNNs. We approached this analysis
by assessing the extend to which these aspects could be used as a proxy for explaining the
predictions made by the network and interpreting the concepts it encodes internally. First,
we studied the pose matrices of the class capsules. Via reconstructions of perturbed pose
matrices, we show that the parameters of these matrices encode instantiation parameters
of the classes they represent. This aspect can thus be used for interpreting the concepts
learned by the network, similar to the observations made by other works [27,28,19].
However, this observation is different from what the original ”pose” term introduced in
[16] may suggest to the reader. More specifically the use of this term in combination the
dataset of 3D objects used for its validations, suggest that the the ”pose” encoded by

Analyzing the Explanation and Interpretation Potential of Matrix Capsule Networks 13

Table 2. Classification performance (accuracy) of sub-models derived by masking input capsules
in different layers. When masks were applied, the top-5398 input capsules were left unmasked in
the ConvCaps1 layer, the top-668 in the ConvCaps2 layer, and top-217 in the ClassCaps layer.

Masked
Classification

Performance (%)
ConvCaps1 ConvCaps2 ClassCaps

97
x 97

x 96
x 97

x x 96
x x 96

x x 92
x x x 91

these matrices is nothing more than that of the object in the 3D space. We believe this
combination lends itself to confusion, and in fact our preliminary results suggest that
what these parameters encode is heavily dataset dependent. As such, we consider the
term instantiation parameters, used by earlier works, to be more general and appropriate.

1st ConvCaps Layer

A
cc

ur
ac

y

2nd ConvCaps Layer ClassCaps

top-k input capsules used

Fig. 7. Classification performance of the network when varying the top-k input capsules left
unmasked. Each plot represents the classification performance curve of the network while masking
a subset of the input capsules for each layer independently.

Second, we focused our analysis on the internal activations of capsules within the
network. We observed that the activations do not differ enough between different classes
in earlier layers of the network to be able to identify capsules that are important to a
specific class. This leads us to believe that the capsule activations, on their own, are not
a good proxy for explaining the predictions made by the network.

Additionally, we took a closer look at the routing coefficients computed by the
EM-Routing algorithm. By using them as a proxy for the importance of input capsules

14 Bondarenko et al.

in each layer, we were able to determine a subset of capsules that contributed to most
of the classification performance, for each layer. For some layers, we were able to
mask more than 50% of the input capsules without experiencing a significant drop in
classification performance. Finally, we selected a subset of input capsules for each layer
that maximized the number of capsules being masked, while minimizing the loss in
performance, and experimented by applying these masks to multiple layers at the same
time. We saw a relative drop in performance of at most 5.89%, leading us to believe that
using the routing coefficients as a proxy for input capsule importance is a good first step
towards a robust explanation method for capsule networks.
Potential future work will focus on further refining the use of routing coefficients as a
proxy for input capsule importance based explanation method and alternative methods
to estimate activation paths.

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial
intelligence (xai). IEEE access 6, 52138–52160 (2018)

2. Afshar, P., Heidarian, S., Naderkhani, F., Oikonomou, A., Plataniotis, K.N., Mohammadi, A.:
Covid-caps: A capsule network-based framework for identification of covid-19 cases from
x-ray images. Pattern Recognition Letters 138, 638–643 (2020)

3. Afshar, P., Mohammadi, A., Plataniotis, K.N.: Brain tumor type classification via capsule
networks. In: 2018 25th IEEE international conference on image processing (ICIP). pp.
3129–3133. IEEE (2018)

4. Afshar, P., Plataniotis, K.N., Mohammadi, A.: Capsule networks’ interpretability for brain
tumor classification via radiomics analyses. In: 2019 IEEE International Conference on Image
Processing (ICIP). pp. 3816–3820. IEEE (2019)

5. AL-Tawalbeh, S., Oramas, J.: Towards the characterization of representations learned via
capsule-based network architectures. arXiv preprint arXiv:2305.05349 (2023)

6. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: Quantifying
interpretability of deep visual representations. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 6541–6549 (2017)

7. Bhullar, A.: Interpreting Capsule Networks for Image Classification by Routing Path Visual-
ization. Master’s thesis, University of Guelph (2020)

8. Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in commercial
gender classification. In: Conference on fairness, accountability and transparency. pp. 77–91.
PMLR (2018)

9. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image
classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. pp.
3642–3649 (2012). https://doi.org/10.1109/CVPR.2012.6248110

10. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation.
In: Proceedings of the IEEE international conference on computer vision. pp. 3429–3437
(2017)

11. Gritzman, A.D.: Avoiding implementation pitfalls of “matrix capsules with em routing” by
hinton et al. In: International Workshop on Human Brain and Artificial Intelligence. pp.
224–234. Springer (2019)

12. Grün, F., Rupprecht, C., Navab, N., Tombari, F.: A taxonomy and library for visualizing
learned features in convolutional neural networks. International Conference on Machine
Learning (ICML) Workshops, 2016 (2016)

https://doi.org/10.1109/CVPR.2012.6248110

Analyzing the Explanation and Interpretation Potential of Matrix Capsule Networks 15

13. Gu, J.: Interpretable graph capsule networks for object recognition. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 35, pp. 1469–1477 (2021)

14. Hinton, G.E., Ghahramani, Z., Teh, Y.W.: Learning to parse images. Advances in neural
information processing systems 12 (1999)

15. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: International
conference on artificial neural networks. pp. 44–51. Springer (2011)

16. Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: International
conference on learning representations (2018)

17. Iesmantas, T., Alzbutas, R.: Convolutional capsule network for classification of breast cancer
histology images. In: International Conference Image Analysis and Recognition. pp. 853–860.
Springer (2018)

18. de Jesus, D.R., Cuevas, J., Rivera, W., Crivelli, S.: Capsule networks for protein structure
classification and prediction. arXiv preprint arXiv:1808.07475 (2018)

19. Jung, D., Lee, J., Yi, J., Yoon, S.: icaps: An interpretable classifier via disentangled capsule
networks. In: European Conference on Computer Vision. pp. 314–330. Springer (2020)

20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convo-
lutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q.
(eds.) Advances in Neural Information Processing Systems. vol. 25. Curran Asso-
ciates, Inc. (2012), https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

22. Lin, A., Li, J., Ma, Z.: On learning and learned data representation by capsule networks.
IEEE Access 7, 50808–50822 (2019). https://doi.org/10.1109/access.2019.2911622, https:
//doi.org/10.1109/access.2019.2911622

23. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
bias and fairness in machine learning. ACM Comput. Surv. 54(6) (jul 2021).
https://doi.org/10.1145/3457607, https://doi.org/10.1145/3457607

24. Mitterreiter, M., Koch, M., Giesen, J., Laue, S.: Why capsule neural networks do not scale:
Challenging the dynamic parse-tree assumption. arXiv preprint arXiv:2301.01583 (2023)

25. Mobiny, A., Nguyen, H.V.: Fast capsnet for lung cancer screening. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. pp. 741–749. Springer
(2018)

26. Onal Ertugrul, I., Jeni, L.A., Cohn, J.F.: Facscaps: Pose-independent facial action coding
with capsules. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. pp. 2130–2139 (2018)

27. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Proceedings of
the 31st International Conference on Neural Information Processing Systems. p. 3859–3869.
NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)

28. Shahroudnejad, A., Afshar, P., Plataniotis, K.N., Mohammadi, A.: Improved explain-
ability of capsule networks: Relevance path by agreement. In: 2018 IEEE Global
Conference on Signal and Information Processing (GlobalSIP). pp. 549–553 (2018).
https://doi.org/10.1109/GlobalSIP.2018.8646474

29. Shrestha, A., Mahmood, A.: Review of deep learning algorithms and architectures. IEEE
Access 7, 53040–53065 (2019). https://doi.org/10.1109/ACCESS.2019.2912200

30. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

31. Van Bruggen, S.: Interpretable Capsule Networks: Incorporating Semantic Knowledge with
Guided Routing. Master’s thesis, University of Amsterdam (2019)

32. Wang, Z., Hu, X., Ji, S.: icapsnets: towards interpretable capsule networks for text classifica-
tion. arXiv preprint arXiv:2006.00075 (2020)

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1109/access.2019.2911622
https://doi.org/10.1109/access.2019.2911622
https://doi.org/10.1109/access.2019.2911622
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1109/GlobalSIP.2018.8646474
https://doi.org/10.1109/ACCESS.2019.2912200

16 Bondarenko et al.

33. Yang, L.: Matrix Capsules with EM Routing. https://github.com/yl-1993/
Matrix-Capsules-EM-PyTorch, accessed: 2022-02-17

34. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high
level feature learning. In: 2011 international conference on computer vision. pp. 2018–2025.
IEEE (2011)

35. Zhang, Q.s., Zhu, S.C.: Visual interpretability for deep learning: a survey. Frontiers of
Information Technology & Electronic Engineering 19(1), 27–39 (2018)

36. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for
discriminative localization. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 2921–2929 (2016)

https://github.com/yl-1993/Matrix-Capsules-EM-PyTorch
https://github.com/yl-1993/Matrix-Capsules-EM-PyTorch

	Analyzing the Explanation and Interpretation Potential of Matrix Capsule Networks

