
On the Adaptability of Attention-Based
Interpretability in Different Transformer

Architectures for Multi-Class Classification
Tasks⋆

Sofia Katsaki†1[0009−0001−2270−408X], Christos
Aivazidis†2[XXXX−Y Y Y Y−ZZZZ−AAAA], Nikolaos

Mylonas1[0000−0002−5733−543X], Ioannis Mollas1[0000−0002−7765−7903], and
Grigorios Tsoumakas1[0000−0002−7879−669X]

1 School of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54632,
Greece {skatsaks,myloniko,iamollas,greg}@csd.auth.gr

2 School of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54632,
Greece

{aivazidis}@math.auth.gr

Abstract. Transformers are widely recognized as leading models for
NLP tasks due to their attention-based architecture. However, their
complexity and numerous parameters hinder the understanding of their
decision-making processes, restricting their use in high-risk domains where
accurate explanations are crucial. To overcome this challenge, a technique
named Optimus was introduced recently. Optimus provides an adap-
tive selection of head, layer, and matrix operations, to provide feature
importance based interpretations for transformers. This work extends
Optimus, adapting to two new transformer models, as well as the new
task of multi-class classification, while also optimizing the time response
of the technique. Experiments showed that the performance of Optimus
remains consistent through different encoder-based transformer models
and classification tasks.
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1 Introduction

Transformers [31], widely recognized as the leading models for Natural Lan-
guage Processing (NLP) tasks [25], employ an attention-based architecture to
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effectively model intricate relationships among words and sentences. Their adapt-
ability enables their application in diverse downstream tasks, facilitated by task-
specific layers. As a result, transformers have emerged as the state-of-the-art ap-
proach for numerous NLP problems, including text classification, as examined
in this study.

Despite their impressive performance, Transformer models are known for
their lack of interpretability [29]. This is because of their complex architecture
and numerous parameters, which make it difficult to understand how they arrive
at their decisions. As a result, their use in high-risk domains [15,12], where
accurate explanations are crucial for human lives and economic considerations,
is limited. However, considering the significant potential of Transformers in these
domains, there is a need for interpretability techniques specifically designed for
Transformers.

To facilitate the utilization of transformer models across diverse applications,
the need for interpretability techniques arises. While several model-agnostic tech-
niques, such as Local Interpretable Model-agnostic Explanations (LIME) [26]
or SHAP [19], can be applied to transformers, there are also model-specific
techniques, including Layer-Relevance Propagation (LRP) [2,8], Integrated Gra-
dients (IG) [30], and attention information, such as Rollout [1] and AttEx-
plainer [24]. Regarding the latter, attention-based interpretations have been
heavily criticized lately [13,4], in a recent work of us, we introduce Optimus,
a transformer-specific family of local interpretation techniques, improving a
faithfulness-based metric through adaptive selection of head, layer, and matrix
operations [23].

While Optimus has shown to be a powerful interpretability technique for
binary and multi-label classification tasks using BERT [9] and DistilBERT [28]
transformers, this study explores the application of this technique on two dif-
ferent models, RoBERTa [18] and ALBERT [16] for multi-class classification. In
addition to this adaptation, a series of experiments are conducted to demon-
strate the effectiveness of Optimus in these models for the selected task, using
interpretability metrics as benchmarks. We also explore an optimization proce-
dure that we applied to enhance the speed of Optimus, and finally, we compare
the time response of Optimus with its competitor, IG.

The remaining sections are organized as follows: Section 2 provides back-
ground concepts and discusses studies on transformer interpretability, including
Optimus. Section 3 outlines the methodology for selecting and testing trans-
former architectures with Optimus, along with the corresponding modifications.
The experiments are showcased in Section 4, while Section 5 concludes the study
and highlights potential future directions.

2 Background and Related Work

In this section, we delve into various subjects that are relevant to our work
and also examine previous research that is related to this paper. Initially, we
present the concept of interpretability and highlight two widely recognized tech-
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niques associated with it. Next, we examine the metrics employed to evaluate
the effectiveness of interpretability techniques. Following that, we explore the
interpretability aspect of Transformers and the specific technique that forms the
foundation of this study.

2.1 Interpretability

Interpretability refers to the ability of extracting reasoning behind a model’s de-
cision. It is an important aspect of machine learning and artificial intelligence in
general, as it allows us to gain valuable insights about the inner workings of mod-
els that would otherwise be considered black boxes. These insights can then help
us explain the decisions of models, which is paramount in critical applications
such as healthcare, finance and autonomous systems. [7,3,14]. Interpretability
techniques can be split into different categories based on their applicability on
machine learning models and the scope of their provided interpretations [32].

Regarding the first categorization, we can find two distinct types of inter-
pretability techniques, model-agnostic and model-specific. The former refers to
techniques that can be applied indifferently on any type of machine learning
model, and usually make use of only the model’s decisions to provide explana-
tions. The latter, includes techniques that utilize the unique characteristics of
the machine learning model they try to explain, and are therefore applicable only
on a specific type of model or a family of similar models. Concerning the scope
of the provided interpretations, we can distinguish two types of methods, local
and global. Local techniques provide interpretations for a specific instance at a
time, while global methods provide an overview of the entire model’s decision
process.

Two of the most well-known interpretability techniques are LIME [26] IG [30].
LIME, as the name suggests, is a model-agnostic local method, which tries to
create a simple interpretable model, using the predictions of the black box model,
that is to be interpreted. To achieve this, LIME perturbs the input data around
the instance of interest and generates a new dataset used to train the inter-
pretable model. IG on the other hand is a neural-network specific, local inter-
pretability technique, that uses the gradients of the model. Specifically, it calcu-
lates the gradients of the model’s output with respect to the input features, and
by integrating these gradients, it assigns an importance scores to each feature.

Metrics To determine the most suitable interpretability technique for a given
task, it is crucial to conduct thorough evaluations [17]. While performing user-
oriented experiments with individuals involved in the specific task is an ideal
approach, it may not always be practical or feasible in many scenarios.

As an alternative, quantitative metrics that can be tested in a controlled lab
environment are highly valuable and widely utilized. One effective method to as-
sess the performance of interpretability techniques is by comparing the generated
interpretations with a ground truth interpretation, also referred to as a ratio-
nale. Common metrics used to evaluate the accuracy of interpretations against
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rationales include AUPRC (Area Under the Precision-Recall Curve) and F1 to-
ken score [10]. However, it should be noted that ground-truth interpretations are
not always available for all datasets.

In evaluating interpretability techniques, unsupervised metrics are valuable
for assessing properties such as robustness, comprehensibility, and faithfulness.
Robustness measures the stability of a technique by evaluating the degree of
change in interpretations when instances are slightly modified [21]. Compre-
hensibility quantifies the percentage of non-zero weights in an interpretation,
aiding end-user understanding [27]. Faithfulness evaluation metrics, including
the popular faithfulness score, emulate user behavior to assess interpretation va-
lidity [11]. Truthfulness evaluates interpretations by iteratively removing tokens
and analyzing the model’s response [22]. These metrics provide objective insights
without relying on human input, contributing to the evaluation of interpretabil-
ity techniques.

2.2 Transformers interpretability

Transformer specific interpretability techniques are scarce in the literature. Model
agnostic techniques such as LIME or neural specific ones like IG can be used
to provide interpretations for the decisions of Transformers. These techniques,
however, do not make use of the unique attention-based architecture of those
models and therefore their interpretations are not always sufficient.

A recent study introduced theOptimus family of techniques, for transformer-
specific interpretability. These techniques make use of the attention matrices,
that are readily available during the model’s inference. These matrices exist in
each attention head of each attention layer of the transformer model, and are
combined in such a way to provide the best interpretation for each specific in-
stance, batch of instances and label, depending on the specific technique of the
Optimus family (Optimus Prime, Optimus Batch, Optimus Label respec-
tively).

The combination procedure of Optimus makes use of different operations
among attention matrices found in the literature, as well as a newly proposed
operation the selection of specific head or layer. The best combination of oper-
ations on the head, layer, and matrix layer are selected in a way that optimizes
an unsupervised faithfulness-based metric. Matrix level concerns how the inter-
pretation is extracted, after aggregating the attention matrices from each head
and layer of the Transformer. The resulting matrix from this aggregation has a
size of S × S, where S denotes the length of the input sequence. On the other
hand, feature importance interpretations should be vectors of size S. Therefore,
a procedure is needed to extract such vector from the final attention matrices.
The operations studied in the original work are shown in Figure 1. Additionally,
a baseline attention setup is considered in this work, making use of the most
common operations found in the literature.

To aid with the interpretability process, the previous study also introduces
a faithfulness-based metric called Ranked Faithful Truthfulness (RFT), which is
applicable in feature importance interpretations. This metric, evaluates all parts
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Fig. 1. Head, layer and matrix operations

of the interpretation, while also utilizing the impact each token had towards
the decision during the evaluation process. A penalty is further applied on each
token based on the ranking of its importance towards the decision.

A recent work introduced an attention-based interpretability method called
CLS-A, which averages the attention matrices on the heads of the last layer and
keeps the [CLS] token as the interpretation [5]. This combination of operations,
which is one of the many studied in Optimus was found to provide interpreta-
tions of quality close to those of state-of-the-art methods, including LIME, in a
user-oriented experiment.

3 Our Technique

In this work, our objectives are twofold: a) to extend Optimus to different
transformer architectures, and b) to apply it to multi-class classification tasks.
In addition to our primary objectives, we also focused on optimizing the time
response of Optimus to make it more efficient. The following sections detail the
specific steps we took to achieve these objectives.

3.1 Transformer architectures

To expand the application of Optimus to additional Transformer models, we
initially had to identify certain key properties required for compatibility. Specif-
ically, we sought Transformer models capable of performing sequence classifica-
tion tasks, being encoder-based, and having readily accessible attention matrices
for each head and layer. These criteria were essential to ensure the feasibility of
integrating Optimus with the selected Transformer models.

The transformer being able to perform sequence classification was the main
requirement, since Optimus is employed for text classification interpretability.
Additionally, since in downstream tasks like sequence classification, a common
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practice is to employ only encoder-based models, which properly represent the
terms of an input sequence and reveal token associations and dependencies,
we chose for transformers used in our analysis to be encoder-based. Finally, the
attention matrices being easily accessible is due to them being the primary source
from which Optimus derives its interpretations.

Another restriction we imposed was regarding the pooling strategy employed
during the sequence classification fine-tuning process of the Transformer models.
Specifically, we only considered models that utilized either the embedding of the
[CLS] token or the entire input sequence by averaging the token embeddings.
These criteria led to the exclusion of models like GPT-2, which rely on different
pooling strategies, that didn’t meet our requirements.

With the above in mind, across the multiple models we reviewed, we explored
two new Transformers namely, RoBERTa and ALBERT, which both fill our
criteria. It is worth noting that slight modifications had to be made to Optimus
to make the technique consistent with each of those models. Specifically, the
[UNK] token present in BERT and DistilBERT was exchanged with the ¡unk¿
token for both RoBERTa and ALBERT, as those models do not recognize [UNK].
Additionally, the tokenizer used forOptimus was modified to be compatible with
the ones utilized by those models.

3.2 Multi-class classification - Downstream task

Initially, Optimus was designed for binary and multi-label classification tasks.
However, this study goes beyond by not only introducing two new models to
Optimus, but also exploring its applicability in multi-class classification tasks.
Multi-class classification was not originally tested in Optimus, so in this work,
we made adaptations to the implementation of the RFT metric to ensure its
suitability for multi-class scenarios. Specifically, instead of only handling binary
and multi-label classification, code for handling multi-class classification was also
introduced. As a result, we propose a new variation within the Optimus family
called Optimus Class technique, denoted as OC. This variant finds the best
attention setup for each class of each examined instance.

3.3 Optimization actions

An issue with the previous implementation of Optimus was that when producing
token level interpretations, the time response of the technique showed a steep
increase. The main cause behind this phenomenon was that when Optimus
searched for the best attention setup according to the unsupervised metric, the
examined model was continuously queried to provide predictions about each of
the perturbed instances produced by the faithfulness-based metric.

To address this issue, we employed twin models. One model was utilized to
generate attention matrices and hidden states, facilitating the creation of com-
binations - candidate interpretations. The other model was exclusively used for
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making predictions, particularly in the context of the RFT metric, which de-
mands multiple model audits. With these two models, we can obtain the predic-
tions needed for Optimus to find the best attention setups, much faster, overall
decreasing the required time response. Furthermore, we introduced additional
implementation improvements to further enhance the performance of Optimus.
These enhancements aimed to optimize efficiency, increase speed, and improve
overall functionality of the technique.

4 Experiments

This section introduces our experimental setup, including the models employed,
the datasets utilized, and the performance evaluation of the examined tech-
niques under two distinct interpretability evaluation metrics. The code for our
experiments is available in the GitHub repo of Optimus under the branch ‘mul-
ticlass’ †.

Datasets For our experiments, we utilized two single-label datasets, each con-
sisting of more than two classes, to ensure the evaluation of Optimus’s perfor-
mance on multi-class tasks. HateXplain (HX) [20] is a single-label dataset from
the hate speech domain, containing posts collected from Twitter and Gab. The
annotators classified the posts as hateful, offensive, normal, or undecided if the
distribution of their votes were uniformly distributed amongst the 3 classes. The
latter was not taken into account due to the ambiguity of the results. Addition-
ally, we randomly selected 10,000 samples from the original dataset where we
performed a 7,000-1,000-2,000 train-val-test random split to train the models
and evaluate the results. The second dataset, ESNLI [6], is a single-label clas-
sification dataset for natural language understanding. Given two sentences, the
premise and hypothesis, the objective is to determine their relationship: entail-
ment, contradiction, or neutral. We selected the first 10,000 samples where we
performed a 7,000-1,000-2,000 train-val-test random split to train the models
and evaluate the results. Both datasets were examined on token-level, meaning
that the interpretations provided by the interpretability techniques concern each
token of the input sequence rather than whole sentences. A few statistics about
the datasets can be found in Table 1.

Table 1. Key statistics for each dataset and models’ performance on them. Information
about mean size is presented in token. Performance is measured in terms of F1 macro
(%)

Performance

Dataset Mean Size Classes BERT DistilBERT RoBERTa ALBERT

HX 23.9 3 79.06 76.34 83.04 79.22
ESNLI 24.4 3 62.58 64.93 63.28 63.33

† https://tinyurl.com/4wjac6ap

https://tinyurl.com/4wjac6ap
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4.1 Setup

The transformer models deployed in our experimentation on the multi-class se-
quence classification task, were the ones encountered in the initial publication
of Optimus, namely BERT and DistilBERT, along with two additional models,
that were ALBERT and RoBERTa. We selected the base implementation for all
the transformers utilized. Both BERT and DistilBERT contained casing infor-
mation, while ALBERT and RoBERTa did not. It should be mentioned that for
ALBERT, we used the second version of the pre-trained model. Table 1 presents
the F1 macro score results obtained from fine-tuning the models on the two
datasets.

4.2 Metrics

Through the course of our experimentation on the attention-based interpretabil-
ity approach of Optimus, two metrics were utilized, with the view to assess the
performance of the explanations provided by each one of the techniques. First
and foremost, we employed the RFT metric, which factors both faithfulness and
truthfulness, which was discussed in Section 2.2. The second metric deployed
was AUPRC, introduced in Section 2.1. The inclusion of the latter was deemed
as indispensable, since HX, as well as ESNLI, incorporate rationales delivered by
human annotators. It is worth noting that for both of the examined metrics and
datasets, the performance showcased is the average score of the metric across all
test instances as evaluated on the predicted classes.

4.3 Results

Table 2 presents the RFT performance of Integrated Gradients (IG) along with
the variations of Optimus. LIME was excluded from this set of experiments as
the results of the original paper suggest that it is both time-consuming and low-
performing. Similar to the original work, ‘B’ represents the Baseline attention
setup, which includes averaging attention heads and layers, as well as using the
“From [CLS]” strategy at the matrix level. ‘OB’ refers to Optimus Batch.
The newly introduced variant, Optimus Class, is denoted as OC in the table.
Similarly, Table 3 presents the interpretability techniques’ performance in terms
of AUPRC.

As we can see from the results,Optimus provides competitive interpretations
compared to IG even on the task of multi-class classification in terms of both
metrics. This phenomenon remains the same across all different Transformer
models examined. Specifically, the baseline attention setup achieves results close
or even higher to IG, while the variants of OB and OC outperform IG in most
cases (6 out of 8 for both in terms of RFT and 7 out of 8 for OB and 6 out of 8
for OC in terms of AUPRC).

Based on our experimental procedure, we showed that the quality of in-
terpretations provided by Optimus is consistent with different encoder-based
Transformers, showcasing the applicability of the technique for a wider range
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Table 2. Performance of interpretability techniques in terms RFT when explaining
several transformer models on different datasets. Best performance denoted with bold

IG B OB OC

ESNLI (BERT) 0.456 0.488 0.615 0.876
ESNLI (DistilBERT) 0.385 0.481 0.552 0.706

ESNLI (RoBERTa) 0.442 0.266 0.597 0.876
ESNLI (ALBERT) 0.259 0.612 0.664 0.863

HX (BERT) 0.476 0.337 0.371 0.458
HX (DistilBERT) 0.467 0.357 0.379 0.455

HX (RoBERTa) 0.350 0.350 0.355 0.422
HX (ALBERT) 0.314 0.408 0.433 0.562

Table 3. Performance of interpretability techniques in terms AUPRC when explaining
several transformer models on different datasets. Best performance denoted with bold

IG B OB OC

ESNLI (BERT) 0.290 0.514 0.614 0.443
ESNLI (DistilBERT) 0.301 0.576 0.651 0.498

ESNLI (RoBERTa) 0.316 0.274 0.593 0.408
ESNLI (ALBERT) 0.337 0.602 0.604 0.438

HX (BERT) 0.508 0.488 0.541 0.500
HX (DistilBERT) 0.481 0.498 0.531 0.506

HX (RoBERTa) 0.477 0.523 0.514 0.489
HX (ALBERT) 0.464 0.408 0.422 0.413

of models. Additionally, attention-based interpretations were found to be of the
same or even higher quality than those provided by state-of-the-art methods for
the task of multi-class classification as well.

Time optimization By optimizing our technique and adopting a twin-model
architecture, we successfully reduced the runtime of Optimus. Specifically, when
tested on the ESNLI dataset using the BERT model, we achieved a reduction
in time-response for a single instance from 3.35 (original time-response) to 2.70
seconds. This improvement renders Optimus suitable for online scenarios, where
quick interpretation is essential.

Time comparison In addition, we conducted a time comparison between IG and
our newly proposed variant OC. The results of this analysis can be found in Ta-
ble 4, which demonstrates that despite the time optimization efforts inOptimus,
IG still exhibits faster performance compared to our technique. Specifically, it
is observed that OC is slower than IG across all examined datasets and models.
This can be attributed to the time-consuming nature of the RFT metric, which
is required for the interpretation production process in Optimus.
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Table 4. Average time response (seconds) of the examined techniques across different
models and datasets

ESNLI HX
BERT DistilBERT RoBERTa ALBERT BERT DistilBERT RoBERTa ALBERT

IG 0.75 0.5 0.75 0.88 0.85 0.51 0.75 0.83
OC 2.70 1.67 3.17 3.08 3.08 1.75 3.42 3.51

5 Conclusions

In this work, we explored the adaptability of Optimus, a transformer-specific
attention-based interpretability technique, on different encoder-based transform-
ers and the task of multi-class classification. Results were found to be consis-
tent with the original claims of the technique being applicable to additional
encoder-based Transformer models, while also showcasing the competitiveness
of attention-based interpretations in another popular downstream task, multi-
class classification. Specifically, two different multi-class datasets were used, and
two interpretability evaluation metrics were measured.

Our proposed variant,Optimus Class, tested on two new Transformer mod-
els, seems to be consistent with the results showcased in the original paper, out-
performing IG in most cases for both metrics and datasets. Nevertheless, despite
our time optimization process improving the overall time response of the tech-
nique, Optimus Class, is still slower than IG, when evaluated on token-level
interpretations.

5.1 Limitations

This extension of Optimus inherits some limitations from the original technique,
while also optimizing the process to some extent. By utilizing two separate mod-
els—one for predictions and one solely for attention—the technique seeks to
mitigate some of the challenges. However, the inherent limitations, such as the
time-consuming nature of operation selection and scalability issues, still persist
to some degree.

5.2 Future directions

Our primary objectives for future analysis of Optimus will be to encompass
an expanded scope of transformers, including those with an encoder-decoder-
based or decoded-oriented architecture. We will also integrate a wider variety of
NLP tasks and incorporate additional datasets. Another avenue of investigation
would entail studying the cognitive systems of the end-users, to comprehend their
perception and deductive reasoning processes, with an aim to provide more user-
friendly IML APIs, which allow end-users to manually adjust the features and
parameters of these IML systems. To achieve this, we would like to conduct a
large-scale, extensive human-oriented user study.
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