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Abstract. Multi-target regression is useful in a plethora of applications.
Although random forest models perform well in these tasks, they are
often difficult to interpret. Interpretability is crucial in machine learn-
ing, especially when it can directly impact human well-being. Although
model-agnostic techniques exist for multi-target regression, specific tech-
niques tailored to random forest models are not available. To address this
issue, we propose a technique that provides rule-based interpretations
for instances made by a random forest model for multi-target regres-
sion, inspired by a recent model-specific technique for random forest in-
terpretability. The proposed technique was evaluated through extensive
experiments and shown to offer competitive interpretations compared to
state-of-the-art techniques.
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1 Introduction

The problem of multi-target regression, which has gained popularity in the last
few years, involves predicting two or more continuous values, similar to multi-
label classification [16]. Given an input dataset with features and corresponding
target outputs, the goal is to estimate the target vector based on the input. Multi-
target regression has several applications such as air quality monitoring [8], water
quality prediction [15], and electronic health record analysis [13].

There are two main approaches to multi-target regression: problem transfor-
mation and algorithm adaptation. Problem transformation involves transforming
a multi-target problem into multiple independent single-target problems, while
algorithm adaptation adapts a specific method to handle multi-target regression
data. Techniques falling into the latter category include predictive clustering
trees (PCTs) [7], fitted rule ensembles (FIRE) [1], and random forests (RF) [2].
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Interpretability provides reasoning behind the decisions of machine learn-
ing models. Most machine learning applications benefit from interpretability,
especially when they can affect human life directly (health applications) or indi-
rectly (economic applications) [6]. Interpretability in the context of multi-target
regression is a scarcely explored topic, with very few techniques being available
for this task. PCTs are inherently interpretable, similar to traditional decision
trees. Furthermore, FIRE is also inherently interpretable due to the small num-
ber and length of the rules it produces. On the other hand, RF is not inherently
interpretable, and model-specific interpretability techniques for multi-target re-
gression have not yet been developed.

Various techniques that are model-agnostic provide rule-based interpreta-
tions for single-label classification and regression tasks. Such techniques include
RuleFit [4], Anchors [14], and LORE [5]. However, they cannot be used for multi-
target regression. In addition, a local model-agnostic technique called MAR-
LENA [12] has been designed specifically for multi-label learning problems.

This work addresses the challenge of interpretability of RF in the context
of multi-target regression, by introducing a technique designed to explain pre-
dictions of specific instances, called XMTR (eXplainable Multi Target Regres-
sion random forests). Our technique is based on a recent technique for local
model-specific interpretability of RF, called LionForests (LF), which can ac-
commodate both single-label and multi-label tasks [9,11]. XMTR provides rule-
based interpretations for the predictions of the underlying model. To evaluate
our method, we conducted quantitative, qualitative and scalability experiments,
which demonstrate that XMTR offers competitive interpretations to those of
state-of-the-art techniques. Overall, our results show that XMTR is a practical
solution for enhancing the interpretability of RF in multi-target regression tasks.

2 Explainable multi-target regression

This work contributes a technique for addressing the interpretability of RF mod-
els for multi-target regression by proposing an extension to LF. First, we will
present some fundamental concepts necessary for both LF and XMTR. Then,
we will present the main three steps of LF, which include: a) path extraction, b)
path reduction, and c) rule composition, and the extensions we are introducing.

LF provides a single rule, which explains the decision of a particular instance,
without affecting the structure of the model. Through path reduction, it is pos-
sible to reduce the number of features in the rule, as well as to widen the feature
ranges, making the interpretation more comprehensive to the end user. A rule
provided by LF is formulated as a set of feature ranges. An example of such a
rule is “if 3 ≤ f2 ≤ 8 and 7 ≤ f3 ≤ 12 then ti”, where a model predicted target
ti, based on features f2 and f3, among the available ones.

Path conclusiveness. Conclusiveness, is a vital property of rules [9]. A rule is
conclusive if the model’s prediction being interpreted for an instance remains the
same, both when the values of the excluded features (f1 and f4 in our example)
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are modified arbitrarily and when the values of the included features (f2 and f3
in our example) are modified within the specified ranges.

Allowed error. The concept of allowed error [9], enables the formation of con-
clusive rules in tasks like regression. With allowed error, it is possible to reduce
the number of paths and form a smaller rule, while guaranteeing a predictive
error within the allowed limit. The default value for allowed error is equal to
the mean absolute error of the model, according to an evaluation procedure (e.g.
cross-validation), while it can also be user-defined.

Local error. Allowed error will be compared to a local error, local error =
mae(preds, r preds). The predictions made by all the trees are preds. The
r preds refers to either the prediction made by an individual tree when its path
is included, or the highest/lowest possible prediction that the tree could make
(highest/lowest value among all the tree’s leaves) when its path is excluded, de-
pending on which value is farthest from the actual prediction. If we have an RF
with |T | trees and if we exclude |E| trees by choosing to keep only |K| = |T |−|E|,
the final rule may not account for the decisions made by the excluded trees |E|.
If a change is made to a feature that is not included in the final rule, it can lead
to a non-conclusive rule. Thus, the final prediction should be adjusted as follows:
p′(x) = 1

|T | (
∑

k∈K pk(x) +
∑

e∈E pe(x)), where pk(x) is the actual prediction of

the tree k and pe(x) is the minimum/maximum prediction of the tree e.

Path extraction. The initial step is to perform a path extraction procedure, which
aims to collect all the paths taken by the trees in the RF that the given instance
follows to obtain its predicted values. During this process, each tree is traversed,
and the path that the instance takes from the root to the leaf node to arrive at
its prediction is tracked. While following each path, the decisions of each internal
node are examined, and the feature used for the split at that node is recorded,
along with its threshold value. Hence, for each tree, a path is produced that
includes all the features that were used, as well as their minimum and maximum
threshold values, and the predicted value of the instance.

Path reduction. Once the features and their ranges for each path are gathered,
the subsequent crucial step is path reduction. The purpose of this step is to
exclude paths that are not essential to the decision. In [9], several reduction
strategies are proposed, but here we focus solely on association rules reduction
since it is suitable for regression tasks. Association rules are utilized to assign a
confidence score to each path, and the features with lower confidence scores are
gathered in an empty feature set. The iterative process of enriching the feature
set continues until the number of paths, whose conjunctions of features are all
included in the feature set, produces a local error smaller than the allowed error.

Rule composition. The last step is to combine all knowledge acquired from the
earlier steps, and create a single rule expressed in natural language. In the Rule
composition step, for each feature, we collect its ranges from the reduced paths
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in which it appears, and afterwards, we compute the intersection of its ranges.
A conclusive rule contains these intersections of all features.

Fig. 1. Workflow of the proposed approach

Adaptation to multi-target regression. This work extends LF towards interpret-
ing multi-target regression RF models. Our extension, named XMTR, provides
a single rule explaining the whole target set. One such example rule, can be seen
at the end of the workflow of Fig. 1. Among the path reduction strategies of
LF, we selected association rules, for its ability to reduce effectively both paths
and features. This is crucial because the generated rules will only contain the
necessary features. Secondly, it is the only strategy that can be modified to work
for multi-target regression tasks. The goal is to produce a rule that explains the
entire prediction, rather than a single specific target at a time.

XMTR modifies the selected path reduction strategy to consider multiple
allowed errors, one for each target. Then the local errors are compared based
on two schemes. One compares their average to a globally shared allowed error,
while the other uses multiple allowed errors, each tailored to a target. The former
enables faster and simpler rule production, as the user defines only one error
threshold. The latter provides greater flexibility, as the user can prioritize certain
targets by setting a less strict allowed error for less important targets and a
stricter one for more important ones, according to his/her preferences.

3 Experiments

In this section, we first present the setting of our experiments, including a sum-
mary of the datasets we examined, the metrics we used and the competitors
we compared. We then present the results of both the quantitative and qual-
itative experiments we conducted. Finally, we include a scalability analysis,
based on the allowed error parameter of XMTR. The datasets as well as the
code for our technique and experiments are available in our XMTR repository
https://github.com/intelligence-csd-auth-gr/XMTR.

https://github.com/intelligence-csd-auth-gr/XMTR
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3.1 Experimental setup

The datasets used are Slump [15], Andro [15], and Facebook metrics [10], all of
them concerning multi-target regression. These datasets have {103, 49, 500} ex-
amples, {7, 30, 18} features, and {3, 6, 4} targets. No pre-processing took place
besides for Facebook metrics, where the features {like, Share, Paid} were ex-
cluded due to containing missing values, and one categorical feature was ex-
cluded, as this work does not address this issue.

We employed global (GS) and local (LS) decision tree surrogates, along with
MARLENA (MA). As MARLENA was originally intended for multi-label inter-
pretability, we had to make some adjustments to make it suitable for multi-target
regression. In specific, we converted the surrogate model of the technique into a
regressor, and modified the rules exported to include its prediction. More details
regarding these techniques can be found in our repository.

We used three evaluation metrics. The first is coverage, which quantifies the
amount of instances covered by a rule. Higher values indicate better performance.
The second is rule precision, which quantifies the number of correctly covered
instances. Lower values indicate better performance, as we measure MAE. Fi-
nally, rule length quantifies the number of conjunctions present inside the rule.
Depending on the user and case, lower or higher values may be preferred [3].

3.2 Quantitative results

The RF models’ parameters were selected through a grid search process, and
their values can be located in our repository at XMTR. However, we report the
RF models’ performance in MAE for each dataset; 1.7311 for Slump, 1.3326
for Andro, and 0.1008 for Facebook metrics. Our quantitative experiments also
involve three distinct allowed error values for each dataset, which determine the
maximum permissible amount of error for each rule concerning the target values.
These allowed error values are denoted with #1, #2, and #3 and correspond to
0.2, 0.25, and 0.5 for Slump, 0.55, 0.6, and 0.7 for Andro, and, finally, 0.1, 0.3, and
0.5 for Facebook metrics, respectively. While a plethora of allowed error values
were tested, this paper showcases only the ones that exhibit noticeable changes
in the performance of MAE and rule length metrics, due to space limitations.

The data is partitioned using a 10-fold cross-validation strategy, and the
training set is employed to initialize XMTR and its competitors. For every test
instance, we generate interpretations and compute the metrics. Finally, we av-
erage these metrics across all instances, obtaining the final value.

Table 1 presents the results. In terms of coverage, GS and LS demonstrated
relatively higher performance compared to XMTR and MA, suggesting that the
rules generated by the latter two techniques are more specific to the instances.
Regarding MAE, XMTR showed competitive performance across all allowed er-
ror categories, achieving comparable results to the other techniques. However,
for #3, which corresponds to higher allowed error values in all three datasets,
XMTR’s performance was slightly lower. This outcome is expected, as allow-
ing a higher error value tends to lead to more general rules with larger errors.

https://github.com/intelligence-csd-auth-gr/XMTR
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LS produced the shortest rules, while XMTR generated longer ones due to its
higher specificity. Furthermore, higher allowed error values resulted in shorter
rules, reflecting the greater path reduction mentioned earlier.

Coverage MAE Rule Length
Technique Slump Andro Facebook Slump Andro Facebook Slump Andro Facebook

XMTR (#1) 0.09 0.13 0.04 0.09 0.06 0.00 6.8 21.4 7.9
XMTR (#2) 0.09 0.17 0.04 0.17 0.25 0.02 6.7 20.4 7.6
XMTR (#3) 0.10 0.20 0.05 1.46 0.68 0.28 4.9 18.1 5.6

GS 0.20 0.35 0.19 0.22 0.34 0.02 3.9 4.3 3.6
LS 0.23 0.34 0.19 0.30 0.40 0.03 2.9 3.5 2.7
MA 0.11 0.23 0.09 0.16 0.21 0.02 4.8 6.9 4.7

Table 1. Results of the quantitative experiments comparing XMTR, GS, LS, and MA,
regarding Slump, Andro, and Facebook metrics datasets, across the coverage, MAE,
and rule length metrics

3.3 Qualitative results

We randomly selected an instance from the Slump dataset to conduct quali-
tative experiments, presenting the XMTR and MA rules. Slump was selected
due to the small number of features, allowing for better visualization. For the
selected instance, the RF model predicted 7.9 for Slump, 7.2 for Flow, and 4.9
for Compressive Strength targets.

XMTR: if 207 ≤ Water ≤ 208 & 100 ≤ Slag ≤ 107 & 708 ≤
Coarse Aggr ≤ 753 & 137 ≤ Cemment ≤ 151 & 126 ≤ Fly ash ≤ 141
then Slump : 7.9±0.8, Flow : 7.2±0.7, Compressive Strength : 4.9±0.2

MA: if 185 < Water ≤ 209 & Slag ≤ 144 & Coarse Aggr ≤ 843 &
80 < Fly ash ≤ 198 & Fine Aggr ≤ 885 then Slump : 7.7, Flow : 6.8,
Compressive Strength : 4.8

Both rules covered 5 out of 7 features. XMTR excluded SP and Fine Aggr,
while MA excluded SP and Cemment. Changing SP did not affect the predic-
tion, but modifying Cemment from 145 to 136 (1 lower than XMTR’s suggested
range) did have an impact. Conversely, adjusting Fine Aggr from 883 to 640
(the minimum value in the training set) did not affect the prediction. There-
fore, XMTR correctly excluded the two features that don’t affect the prediction,
while MA mistakenly excluded Cemment, which seems to impact the target.
We excluded LS and GS from this analysis to keep the paper concise. However,
both LS and GS exhibited similar behavior to MA. This experiment aimed to
highlight the inconclusive nature of MA compared to XMTR. If even one rule
is inconclusive, the conclusiveness property doesn’t hold for that technique. On
the other hand, XMTR, which builds upon LF, maintains that property.
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3.4 Allowed error and scalability

We aim to measure the effect of allowed error, in the time response of XMTR. We
anticipate a consistent increase in the time for rule generation in correlation to
the value of allowed error. Higher error values allows for greater path exclusion
by XMTR, resulting in higher time response. We use two synthetic datasets
created through scikit-learn, one relatively small (D1) containing 500 instances,
10 features and 5 targets, as well as a larger one (D2) with 5000 instances, 50
features and 7 targets. Furthermore, the RF model we used for this experiment
consisted of 500 estimators, and we utilized 5 different allowed error values.

D1 D2
allowed error Time #Paths Time #Paths

0.05 0.93 482 0.58 495
0.1 1.89 466 1.03 488
0.15 2.73 449 1.30 481
0.2 3.61 436 1.75 473
0.25 4.38 418 2.01 466
0.3 5.22 401 2.57 457

Table 2. Scalability analysis of XMTR

Table 2, presents the time required by XMTR to produce the rules, as well
as the number of paths used for that rule out of 500 initial ones. It is visible
through these results that our hypothesis holds true and higher error values
allow for greater reduction and thus higher time responses. It is also important
to mention that the total number of instances (500, 5000) did not have any
significant influence on the time performance. Therefore, the choice of allowed
error, is the most critical to the time response of our method.

4 Conclusions

Our work tackled the challenge of interpretability in multi-target regression tasks
for RF, which is a scarcely explored topic with important applications. We in-
troduced a technique called XMTR, which modifies the existing LF approach
for local model-specific interpretability of RF. Through quantitative and qual-
itative experiments, we demonstrated that XMTR outperforms current state-
of-the-art techniques. Additionally, through a scalability analysis, we presented
how XMTR’s allowed error parameter affects time response. Our research high-
lights the potential of XMTR in multi-target regression tasks and contributes to
the advancement of interpretability research in this scarcely explored area.

References
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