

Sofia Katsaki, <u>Christos Aivazidis</u>, Nikolaos Mylonas, Ioannis Mollas, Grigorios Tsoumakas

On the Adaptability of Attention-Based Interpretability in Different Transformer Architectures for Multi-Class Classification Tasks

Transformers Interpretability

Model Agnostic

- LIME
- SHAP

Neural Specific

- Integrated Gradients (IG)
- Layer-wise Relevance
 Propagation (LRP)

Transformer Specific

- Attention Scores
- LRP for Transformers
- Attention Rollout Attention Flow
- BertViz (Visualization)

Interpretability Evaluation

Ground Truth / Rationalebased

- Human-annotated

09/27/2023

AIMLAI	worksho p	is	awesom e
0	0	0	1

 Compared with feature importance interpretations usually with metrics like AUPRC, F1-token
 May contain bias and noise

Faithfulness-based

- Emulates human user by removing/altering the elements of the input

- Known metrics:
- Faithfulness
- Truthfulness
- Faithfulness Violation Test

Children the second sec

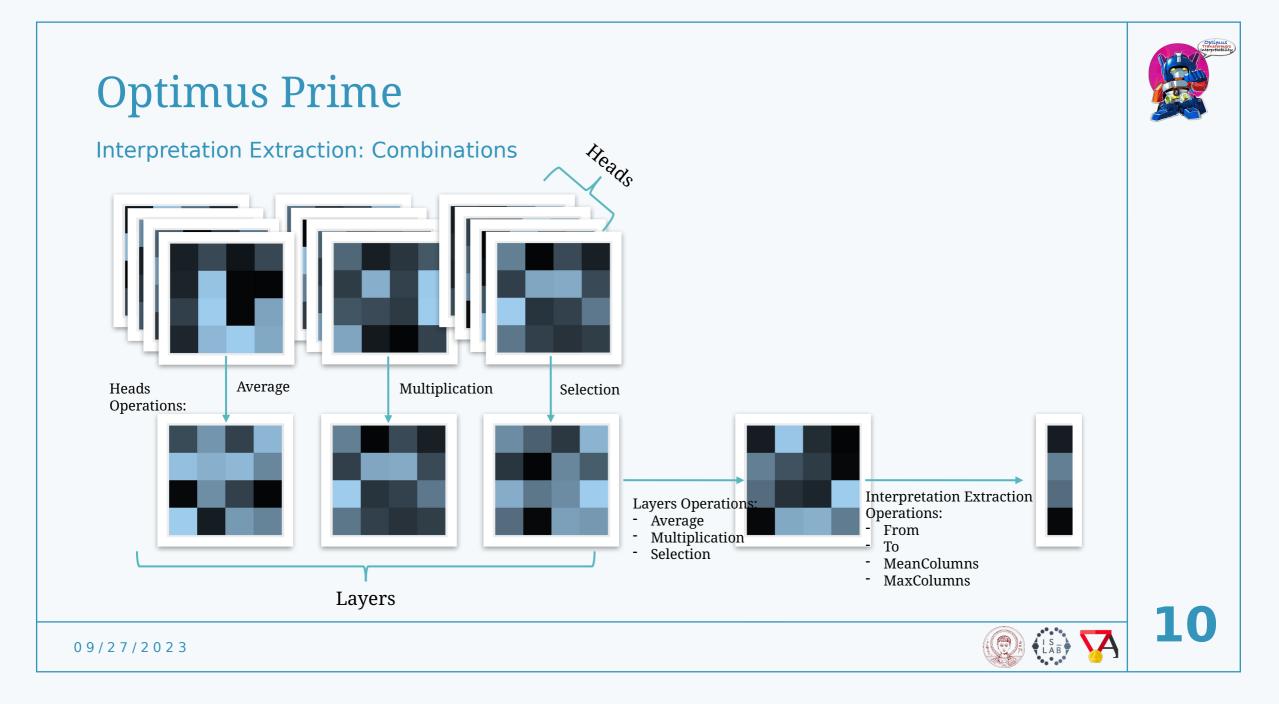
Optimus Prime

Attention Scores

- Self-attention layer receives a S × E matrix
 - S: sequence length,
 - E: embedding size.
- Three linear layers produce Q, K, V of S x E dimensions from the input matrix
- Dot product of Q and K is calculated, and divided by the square root of the embedding size
- The attention mask is added
- Those operations result in a matrix of dimensions S × S which contains both negative and positive values, namely the attention scores
- Attention scores are normalized using softmax function

	[CLS	You	Need	Attention	[SEP]	
[CLS	0.1 7	0.1 4	0.3 2	0.3 5	0.0 1	
You	0.0 6	0.2 3	0.3 0	0.3 9	0.0 1	
Nee	0.0 5	0.0 8	0.6 8	0.1 8	0.0 0	
Attentio	0.0 8	0.0 7	0.1 5	0.6 9	0.0 1	
[SEP]	0.1 8 Exa Mat	0.1 7 mple: rix	0.1 9 Atte	0.1 7 ntion	0.3 0	
A=softr	nax	$x(\frac{Q}{2})$	$\frac{1}{\sqrt{E}}$	T — + ĭ	nas	s k)
						4 I S _ A

Optimus Prime


Interpretation Extraction

	[CLS	You	Need	Attention	[SEP]	[CLS	4ou	Need	Attention	[SEP]	[CLS	√ou	Need	Attention	[SEP]	[CLS	tou	Need	Attention	[SEP]
[CLS	0.1 7	0.1 4	0.3 2	0.3 5	0.0 1	0.1 7	0.1 4	0.3 2	0.3 5	0.0 1	0.1 7	0.1 4	0.3 2	0.3 5	0.0 1	0.1 7	0.1 4	0.3 2	0.3 5	0.0 1
You	0.0 6	0.2 3	0.3 0	0.3 9	0.0 1	0.0 6	0.2 3	0.3 0	0.3 9	0.0 1	0.0 6	0.2 3	0.3 0	0.3 9	0.0 1	0.0 6	0.2 3	0.3 0	0.3 9	0.0 1
Nee	0.0 5	0.0 8	0.6 8	0.1 8	0.0 0	0.0 5	0.0 8	0.6 8	0.1 8	0.0 0	0.0 5	0.0 8	0.6 8	0.1 8	0.0 0	0.0 5	0.0 8	0.6 8	0.1 8	0.0 0
Attentio	0.0 8	0.0 7	0.1 5	0.6 9	0.0 1	0.0 8	0.0 7	0.1 5	0.6 9	0.0 1	0.0 8	0.0 7	0.1 5	0.6 9	0.0 1	0.0 8	0.0 7	0.1 5	0.6 9	0.0 1
[SEP 1	0.1 8	0.1 7	0.1 9	0.1 7	0.3 0	0.1 8	0.1 7	0.1 9	0.1 7	0.3 0	0.1 8	0.1 7	0.1 9	0.1 7	0.3 0	0.1 8	0.1 7	0.1 9	0.1 7	0.3 0
	0.1 7	0. 14	0. 32	0. 35	0.0 1	0.1 7	0. 06	0. 05	0. 08	0.1 8	0.1 1	0. 14	0. 33	0. 36	0.0 7	0.1 8	0. 23	0. 68	0. 69	0.3 0
	From [CLS]					То	[CL	.S]		Me	ean	Col	um	ns	Μ	ax	Colu	umr	าร	

8

11

Optimus Prime

Selecting most Faithful Interpretation

 $RFT(x,z) = \frac{1}{S} \sum_{i=1}^{S} \frac{u(x,z,i)}{r(t_i)}$

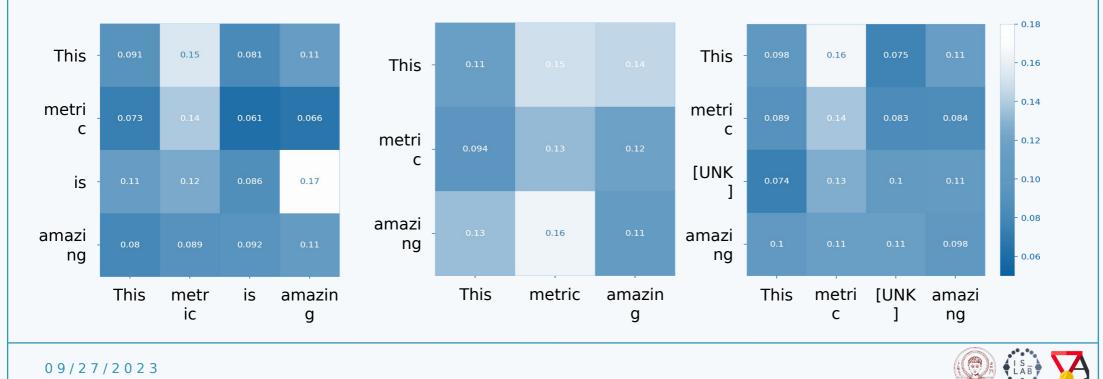
$$u(\mathbf{x}, \mathbf{z}, \mathbf{i}) = \begin{cases} f_{p}(\mathbf{x}) - f_{p}(\mathbf{x}^{-1}), & \text{If } \mathbf{w}_{i} > 0\\ f_{p}(\mathbf{x}^{(-1)}) - f_{p}(\mathbf{x}), & \text{If } \mathbf{w}_{i} < 0\\ - |f_{p}(\mathbf{x}) - f_{p}(\mathbf{x}^{-1})|, & \text{If } \mathbf{w}_{i} = 0 \end{cases}$$

Select a Faithfulness-based metric (such as Ranked Faithful Truthfulness)

Among the calculated operations, choose the most faithful one

Two variations:

- Optimus Class: best per class
- Optimus Batch: choose the combination that performs better in a validation set



13

Optimus Prime

Token Replacement by [UNK]

Optimus Class

ORIGINAL

- Applicable in Binary or Multi-Label tasks through Optimus Prime and Optimus Label
- Applicable in BERT & DistilBERT

• Non-optimized runtime

EXTENSION

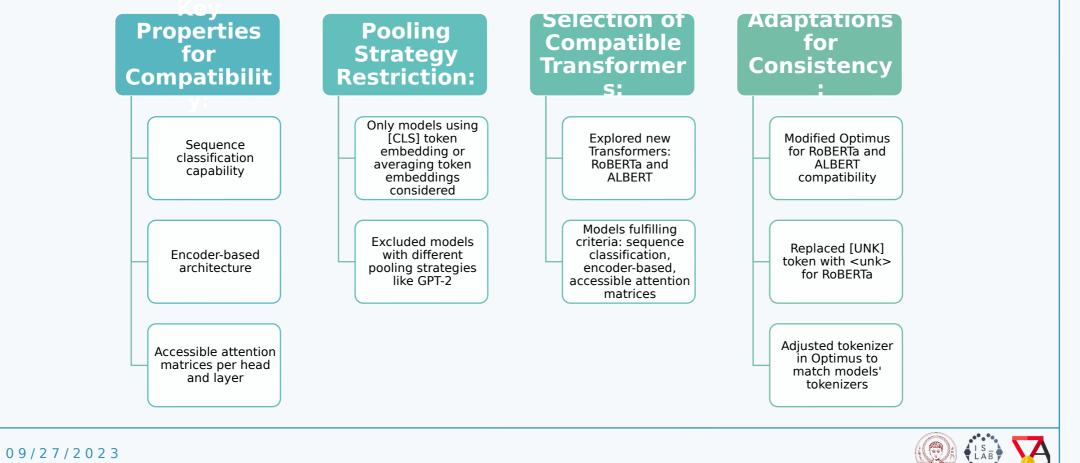
- Applicable in Multi-Class tasks through Optimus Class
- Applicable in BERT, DistilBERT, RoBERTa & AIBERT
- Optimized runtime on inference

14

Optimus Class Multi-Class Adaptation

15

Diverse Application:


- Optimus extended from binary to multi-class tasks
- Introduction of Optimus Class (OC) technique

Multi-Class Adaptation:

- RFT metric adjusted for multi-class scenarios
- OC finds optimal attention setup for each class

Optimus Class Roberta & Albert

16

Optimus Class

Optimization Actions

Time Response Improvement:

- Initial Optimus implementation had slow token-level interpretation times
- Issue stemmed from continuous model queries during attention setup search

Twin Model Approach:

- Two models introduced for efficiency enhancement.
 One model generates attention matrices, while the other handles predictions
- Twin model setup accelerates Optimus by obtaining necessary predictions faster

Performance Enhancements:

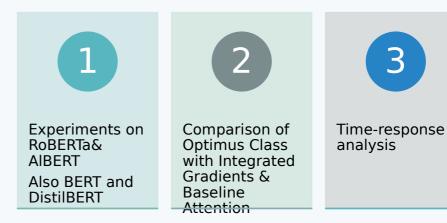
- Additional implementation
 improvements incorporated
- Focus on optimizing efficiency, speed, and overall functionality
- Resulted in enhanced runtime performance for Optimus

17

Experiments - Setup

18

Datasets


HateXplain

- Token-Level Rationales
- Multi-Class (3 Classes)
- Hate Speech

Domain

ESNLI

- Token-level
 Rationales
- Multi-Class (3 Classes)
- Natural Language
 - Understandır Domain

Experiments

Experiments

Comparison of Optimus with other Techniques based on RFT

Dataset/ Model	IG	В	OB	ос
ESNLI (BERT)	0.456	0.488	0.615	0.876
ESNLI (DistilBERT)	0.385	0.481	0.552	0.706
ESNLI (RoBERTa)	0.442	0.266	0.597	0.876
ESNLI (ALBERT)	0.259	0.612	0.664	0.863
HX (BERT)	0.476	0.337	0.371	0.458
HX (DistilBERT)	0.467	0.357	0.379	0.455
HX (RoBERTa)	0.35	0.35	0.355	0.422
HX (ALBERT)	0.314	0.408	0.433	0.562

Experiments

Comparison of Optimus with other Techniques based on AUPRC

Dataset/ Model	IG	В	OB	ос
ESNLI (BERT)	0.29	0.514	0.614	0.433
ESNLI (DistilBERT)	0.301	0.576	0.651	0.498
ESNLI (RoBERTa)	0.316	0.274	0.593	0.408
ESNLI (ALBERT)	0.337	0.602	0.604	0.438
HX (BERT)	0.508	0.488	0.541	0.5
HX (DistilBERT)	0.481	0.498	0.531	0.506
HX (RoBERTa)	0.477	0.499	0.514	0.489
HX (ALBERT)	0.464	0.408	0.422	0.413

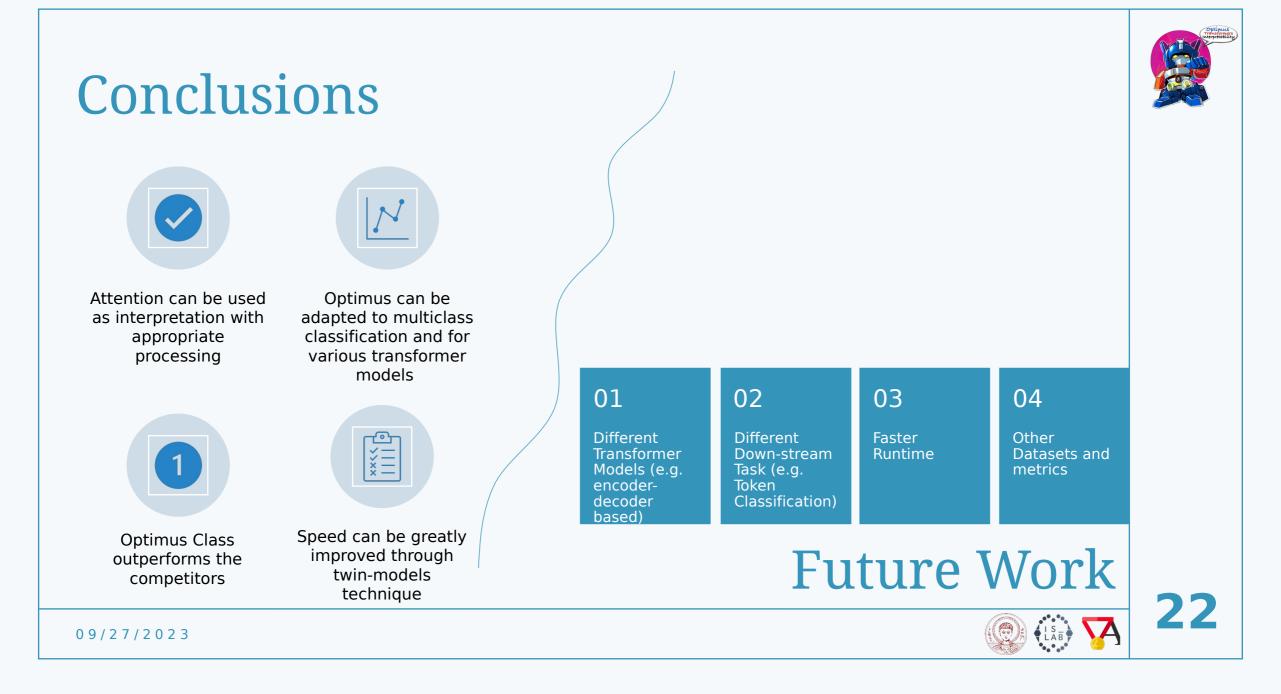
20

Experiments

Computational overhead analysis

		ES	NLI		НХ						
	BER T	DistilBE RT	RoBERT a	ALBER T	BER T	DistilBE RT	RoBERT a	ALBER T			
IG	0.75	0.5	0.75	0.88	0.85	0.51	0.75	0.83			
0 C	2.7	1.67	3.17	3.08	3.08	1.75	3.42	3.51			

Average time response (seconds) of the examined techniques across different models and datasets



21

20 %

Reduced runtime compared to the original

Sofia Katsaki, <u>Christos</u>

<u>Aivazidis</u>, Nikolaos Mylonas,

Ioannis Mollas, Grigorios

The saloniki

On the Adaptability of Attention-Based Interpretability in Different Transformer Architectures for Multi-Class Classification Tasks

The research work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant" (Project Number: 514).

