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Reinforcement Learning
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Goal: Explain past agent’s interactions with the environment (history) through the prism of a predicate d
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Solution: Generate a large range of scenarios, but not the unlikely ones

 Most probable transition at the n last time-step(s)
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History-Explanation based on Predicates (HXP)

n = 1
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History-Explanation based on Predicates (HXP)

n = 2
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0.6

• +1 in Goal position
• +0 otherwise

0.20.2

Frozen Lake

Transition function (   )

Reward function

Actions

Algorithm     Tabular Q-learning

Predicates     goal, holes, region
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Connect4

Transition function

Reward function

Actions

• +1      if win
• -1       if lose
• +0.5   if draw
• +0      otherwise

Algorithm      Deep Q Network (DQN) 

Player 2’s policy

Column number

Predicates     win, lose, 3 in a row, avoid 3 in a row, control mid-column 
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0.2

0.3

0.4

0.1

Transition function

Reward function

Actions

• +3 or +0.25 * |fc|
• -1   per drone in view range
• -3   in crash case

Drone Coverage

Algorithm      Deep Q Network (DQN) 

Predicates      (Local / Global) maximum reward, perfect cover, no drones, crash, region  
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Local maximum reward

Time-step 0 1 2 3 4 Run-time (s)

Exh -0.339 0.475 0.108 0.108 0.002 15.19

1L -0.351 0.488 0.114 0.113 0.002 9.78

2L -0.36 0.506 0.11 0.107 0.0 3.95

3L -0.34 0.498 0.12 0.115 0.0 1.38

4L -0.3 0.45 0.175 0.175 0.0 0.44
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Similarity score

Goal: Compare two length-    vectors     ,      of action importance scores

How ? L2 norm

Similarity score: inverse normalised L2 norm
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Overall Results

Problem Exh-1L Exh-2L Exh-3L Exh-4L

Frozen Lake 0.992 0.983 0.971 0.954

Drone 
Coverage

Local

Global

0.991

0.992

0.981

0.983

0.974

0.977

0.961

0.967

Connect4 0.995 0.979 0.955 0.918

Average similarity scores of HXP
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Overall Results

Problem Exh 1L 2L 3L 4L

Frozen Lake 0.006 0.005 0.003 0.002 0.001

Drone 
Coverage

Local

Global

28.19

27.69

19.08

18.82

7.74

7.63

2.65

2.61

0.81

0.8

Connect4 21.51 20.49 6.51 1.58 0.33

Average running time (in seconds) of HXP



HXP:
 Analyse past agent’s interactions with the environment:

 Predicate-based approach
 Action importance evaluation

 Approximate HXP to reduce computation time

Given a history, display to the user the most imporant action(s) and corresponding state(s) according to 
the achievement of a certain predicate

Action importance scores are computed with the use of the agent’s policy and transition function

Conclusion
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HXP:
 Analyse past agent’s interactions with the environment:

 Predicate-based approach
 Action importance evaluation

 Approximate HXP to reduce computation time

Limits:
 Transition function must be known
 Trade-off between time saving and correctness of the scores generated
 Explain short histories

Future works:
 Explain long histories
 Additional information: most important transition(s) 

Conclusion
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• +1 in Goal position
• +0 otherwise

0.20.2

Frozen Lake

Transition function (   )
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Algorithm     Tabular Q-learning
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Holes

Time-step 0 1 2 3 4 Run-time (s)

Exh -0.323 0.315 -0.262 -0.294 -0.119 0.025

1L -0.34 0.301 -0.301 -0.303 -0.105 0.017

2L -0.315 0.379 -0.317 -0.355 -0.109 0.014

3L -0.387 0.36 -0.333 -0.373 -0.067 0.009

4L -0.4 0.467 -0.467 -0.333 -0.067 0.008



Connect4

Transition function

Reward function

Actions

• +1      if win
• -1       if lose
• +0.5   if draw
• +0      otherwise

Algorithm      Deep Q Network (DQN) 

Player 2’s policy

Column number

Predicates     win, lose, 3 in a row, avoid 3 in a row, control mid-column 



Lose

Time-step 0 1 2 3 4 Run-time (s)

Exh -0.053 -0.082 -0.046 0.234 0.256 6.74

1L -0.077 -0.074 -0.023 0.279 0.32 7.5

2L -0.066 -0.061 -0.016 0.276 0.349 3.15

3L -0.067 -0.046 0.04 0.286 0.421 0.96

4L -0.167 -0.067 0.1 0.5 0.393 0.36



0.2

0.3

0.4

0.1

Transition function

Reward function

Actions

• +3 or +0.25 * |fc|
• -1   per drone in view range
• -3   in crash case

Drone Coverage

Algorithm      Deep Q Network (DQN) 

Predicates      (Local / Global) maximum reward, perfect cover, no drones, crash, region  



Global region

Time-step 0 1 2 3 4 Run-time (s)

Exh 0.819 0.025 0.0 0.0 0.005 21.22

1L 0.826 0.025 0.0 0.0 0.011 11.42

2L 0.837 0.025 0.0 0.0 0.0 4.62

3L 0.86 0.025 0.0 0.0 0.0 1.66

4L 0.8 0.025 0.0 0.0 0.0 0.53
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