

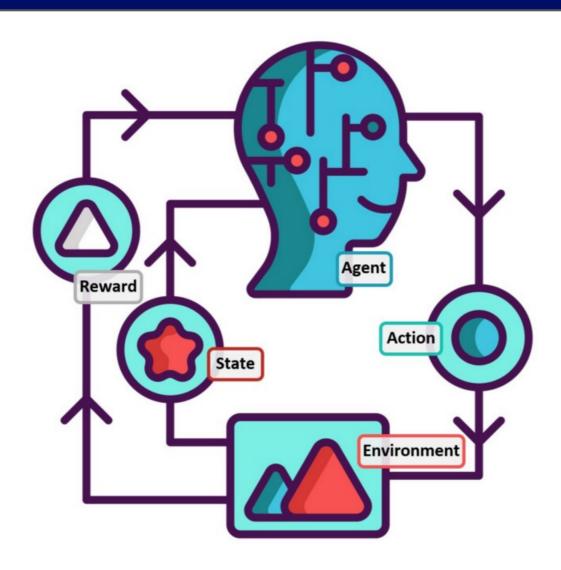
AIMLAI Workshop 2023

Predicate-based explanation of an RL agent via action importance

Léo Saulières

Martin C. Cooper - Florence Bannay

Reinforcement Learning



Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

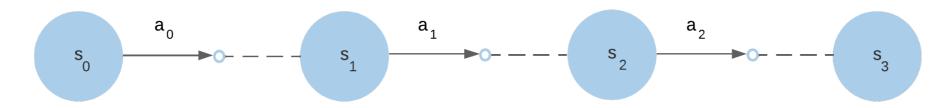
Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the *action importance score* for each state-action *(s,a)* in the length-*k* history *h*

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s,a) in the length-k history h



S State

Action

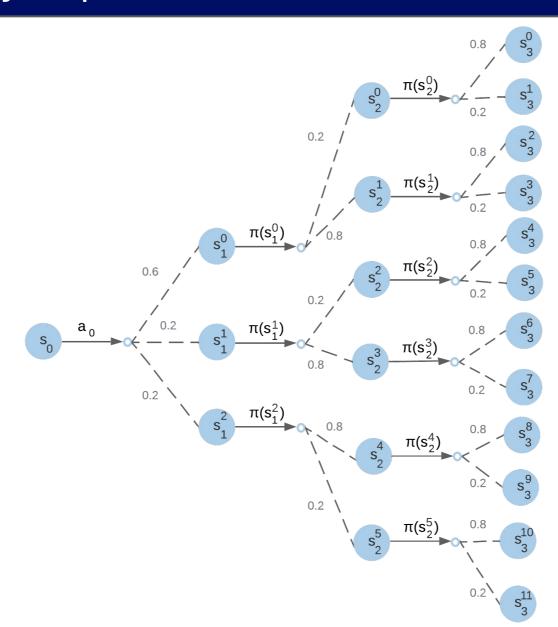
 \cdot – – - Environment's transition

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the *action importance score* for each state-action (s,a) in the length-k history h

• Generate the set of length-k scenarios starting by doing a from s Use of π and the transition function



State

- - - - Environment's transition

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the *action importance score* for each state-action (s,a) in the length-k history h

- Generate the set of length-k scenarios starting by doing a from s Use of π and the transition function
- Compute the probability to reach a final state at horizon k which respects d (utility)

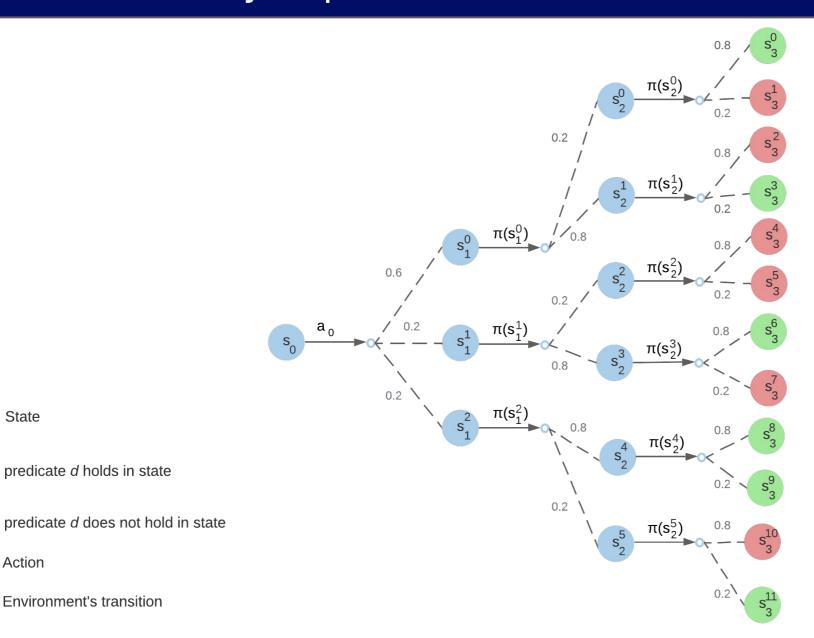
State

Action

predicate d holds in state

Environment's transition

History-Explanation based on Predicates (HXP)



3/11

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s,a) in the length-k history h

- Generate the set of length-k scenarios starting by doing a from s Use of π and the transition function
- Compute the probability to reach a final state at horizon k which respects d (utility) Utility lies in range [0, 1]
- Repeat the process for each action a' ∈ A(s) \ {a}

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s,a) in the length-k history h

- Generate the set of length-k scenarios starting by doing a from s Use of π and the transition function
- Compute the probability to reach a final state at horizon k which respects d (utility) Utility lies in range [0, 1]
- Repeat the process for each action a' ∈ A(s) \ {a}

The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a' \in A(s) \setminus \{a\}$

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s,a) in the length-k history h

The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a' \in A(s) \setminus \{a\}$

Action importance score lies in range [-1;1]

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s,a) in the length-k history h

The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a' \in A(s) \setminus \{a\}$

Action importance score lies in range [-1;1]

Problem: Computationnaly expensive method (#W[1]-hard)

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s,a) in the length-k history h

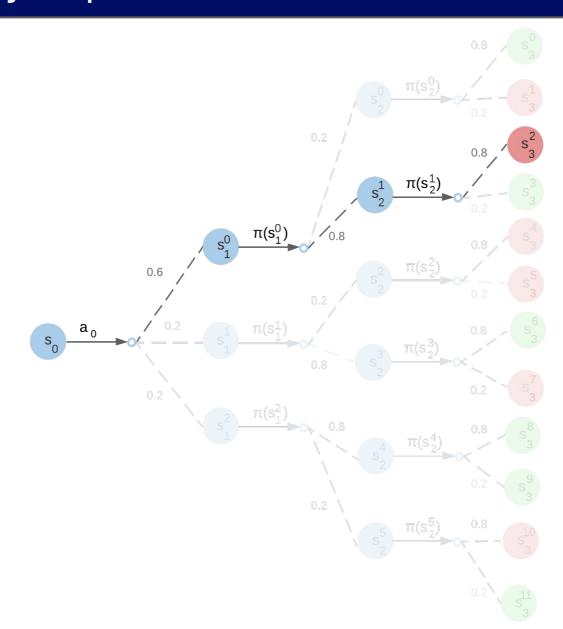
The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a' \in A(s) \setminus \{a\}$

Action importance score lies in range [-1;1]

Problem: Computationnaly expensive method (#W[1]-hard)

Solution: Generate a large range of scenarios, but not the unlikely ones

Most probable transition at each time-step



--- Environment's transition

Action

predicate d holds in state

predicate d does not hold in state

State

Goal: Explain past agent's interactions with the environment (history) through the prism of a predicate d

Question: Which actions were important to ensure that d was achieved, given the agent's policy π ?

Idea: Compute the action importance score for each state-action (s,a) in the length-k history h

The action importance score of an action a, from a state s in the history is the difference between the utility of a and the average utility of any other action $a' \in A(s) \setminus \{a\}$

Action importance score lies in range [-1;1]

Problem: Computationnaly expensive method (#W[1]-hard)

Solution: Generate a large range of scenarios, but not the unlikely ones

Most probable transition at the n last time-step(s)

n = 1

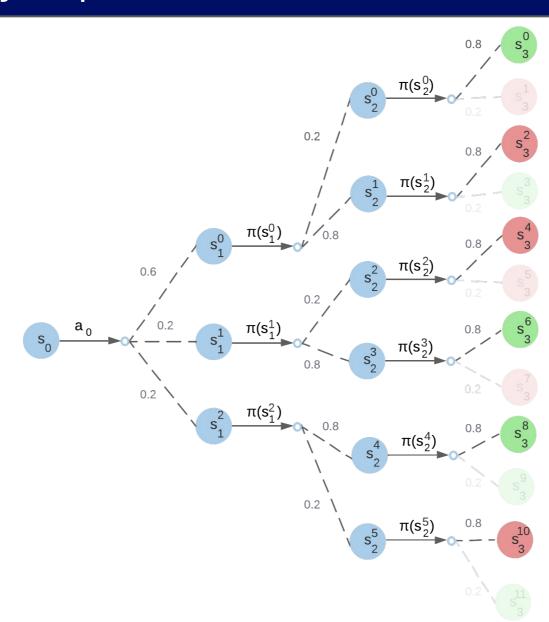
S State

s predicate *d* holds in state

s predicate d does not hold in state

Action

--- Environment's transition



n = 2

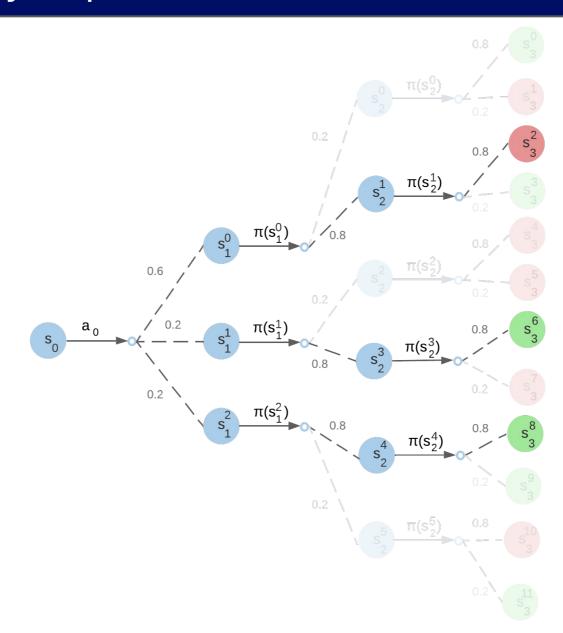
S State

s predicate *d* holds in state

s predicate d does not hold in state

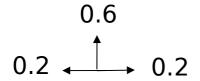
Action

--- Environment's transition

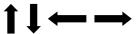


Frozen Lake

Transition function (1)



Actions

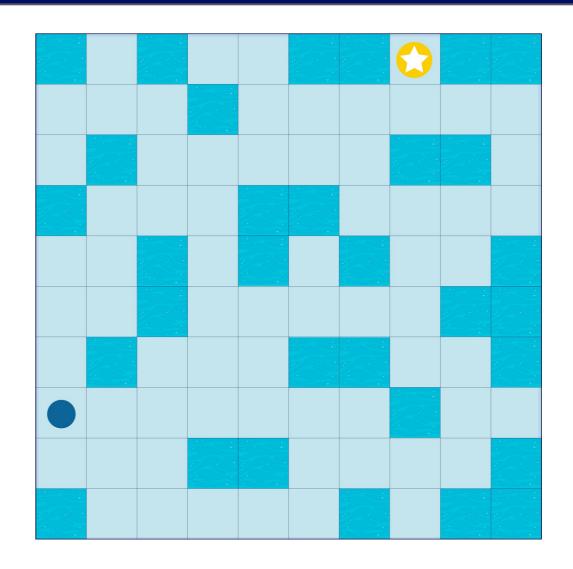


Reward function

- +1 in Goal position
- +0 otherwise

Algorithm Tabular Q-learning

Predicates goal, holes, region



Connect4

Transition function

Player 2's policy

Actions Column number

Reward function

- +1 if win
- -1 if lose
- +0.5 if draw
- +0 otherwise

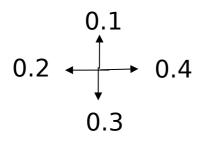
Algorithm Deep Q Network (DQN)



Predicates win, lose, 3 in a row, avoid 3 in a row, control mid-column

Drone Coverage

Transition function

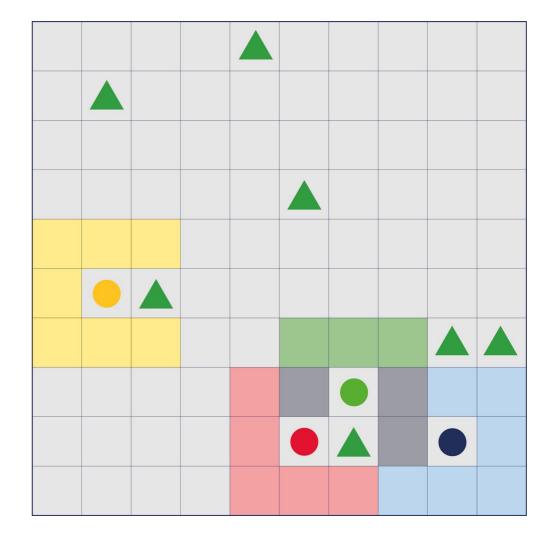


Actions

Reward function

- +3 or +0.25 * |fc|
- -1 per drone in view range
- -3 in crash case

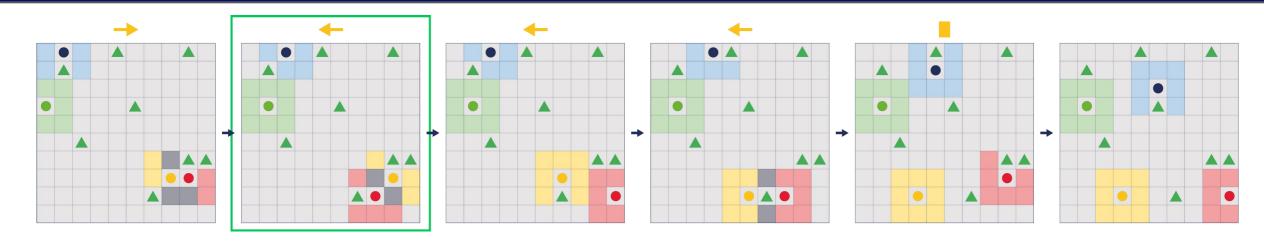
Algorithm Deep Q Network (DQN)



Predicates

(Local / Global) maximum reward, perfect cover, no drones, crash, region

Local maximum reward



Time-step	0	1	2	3	4	Run-time (s)
Exh	-0.339	0.475	0.108	0.108	0.002	15.19
1L	-0.351	0.488	0.114	0.113	0.002	9.78
2L	-0.36	0.506	0.11	0.107	0.0	3.95
3L	-0.34	0.498	0.12	0.115	0.0	1.38
4L	-0.3	0.45	0.175	0.175	0.0	0.44

Similarity score

Goal: Compare two length-k vectors v_1, v_2 of action importance scores

Similarity score

Goal: Compare two length-k vectors v_1, v_2 of action importance scores

How? L2 norm

Similarity score

Goal: Compare two length-k vectors v_1 , v_2 of action importance scores

How? L2 norm

Similarity score: inverse normalised L2 norm

similarity
$$(v_1, v_2) = 1 - \frac{L2(v_1, v_2)}{2\sqrt{k}}$$

Overall Results

Average similarity scores of HXP

Problem		Exh-1L Exh-2L		Exh-3L	Exh-4L
Frozen Lake		0.992	0.983	0.971	0.954
Coverage	Local	0.991	0.981	0.974	0.961
	Global	0.992	0.983	0.977	0.967
Connect4		0.995	0.979	0.955	0.918

Overall Results

Average running time (in seconds) of HXP

Problem		Exh	1L	2L	3L	4L
Frozen Lake		0.006	0.005	0.003	0.002	0.001
Drone	Local	28.19	19.08	7.74	2.65	0.81
Coverage	Global	27.69	18.82	7.63	2.61	0.8
Connect4		21.51	20.49	6.51	1.58	0.33

Conclusion

HXP:

- Analyse past agent's interactions with the environment:
 - Predicate-based approach
 - Action importance evaluation
- Approximate HXP to reduce computation time

Given a history, display to the user the most imporant action(s) and corresponding state(s) according to the achievement of a certain predicate

Action importance scores are computed with the use of the agent's policy and transition function

İRIT

Conclusion

HXP:

- Analyse past agent's interactions with the environment:
 - Predicate-based approach
 - Action importance evaluation
- Approximate HXP to reduce computation time

Limits:

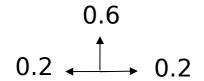
- Transition function must be known
- Trade-off between time saving and correctness of the scores generated
- Explain short histories

Future works:

- Explain long histories
- Additional information: most important transition(s)

Frozen Lake

Transition function (1)



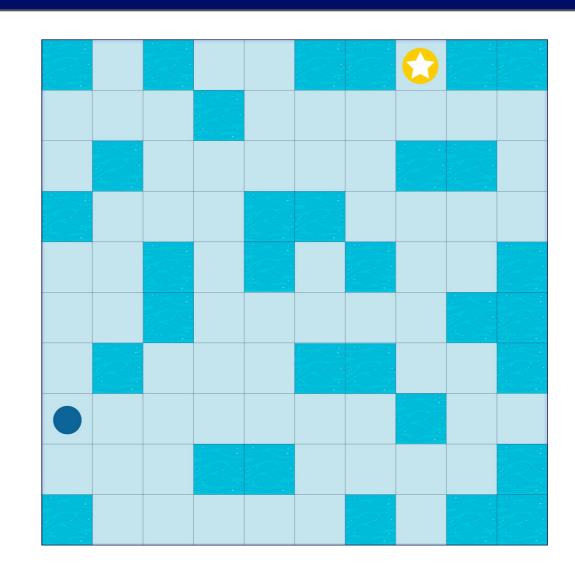
Actions

Reward function

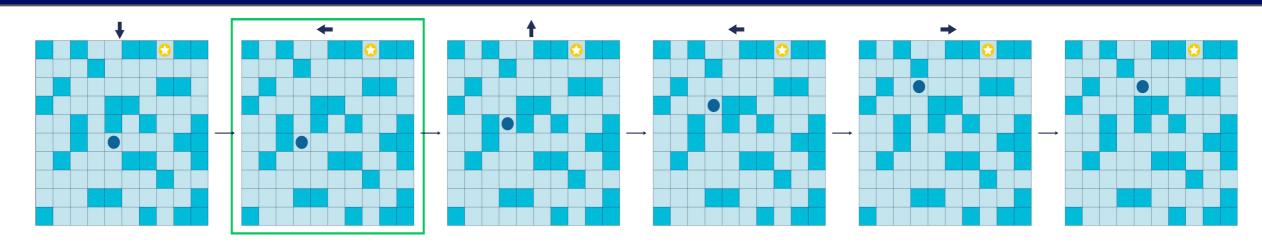
- +1 in Goal position
- +0 otherwise

Algorithm Tabular Q-learning

Predicates goal, holes, region



Holes



Time-step	0	1	2	3	4	Run-time (s)
Exh	-0.323	0.315	-0.262	-0.294	-0.119	0.025
1L	-0.34	0.301	-0.301	-0.303	-0.105	0.017
2L	-0.315	0.379	-0.317	-0.355	-0.109	0.014
3L	-0.387	0.36	-0.333	-0.373	-0.067	0.009
4L	-0.4	0.467	-0.467	-0.333	-0.067	0.008

Connect4

Transition function

Player 2's policy

Actions Column number

Reward function

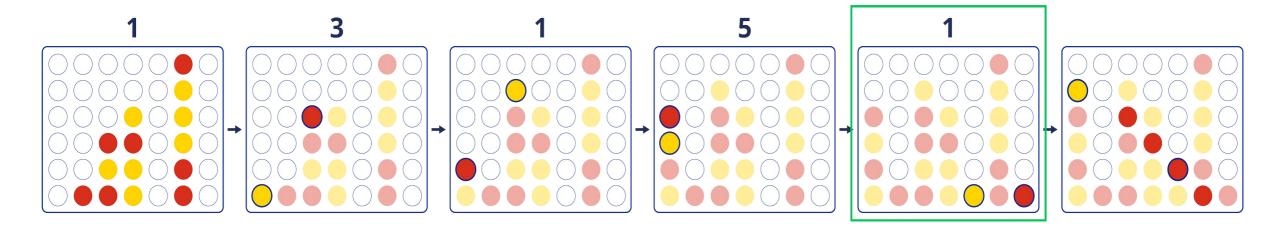
- +1 if win
- -1 if lose
- +0.5 if draw
- +0 otherwise

Algorithm Deep Q Network (DQN)



Predicates win, lose, 3 in a row, avoid 3 in a row, control mid-column

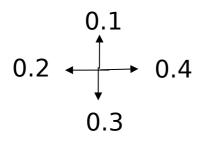
Lose



Time-step	0	1	2	3	4	Run-time (s)
Exh	-0.053	-0.082	-0.046	0.234	0.256	6.74
1L	-0.077	-0.074	-0.023	0.279	0.32	7.5
2L	-0.066	-0.061	-0.016	0.276	0.349	3.15
3L	-0.067	-0.046	0.04	0.286	0.421	0.96
4L	-0.167	-0.067	0.1	0.5	0.393	0.36

Drone Coverage

Transition function

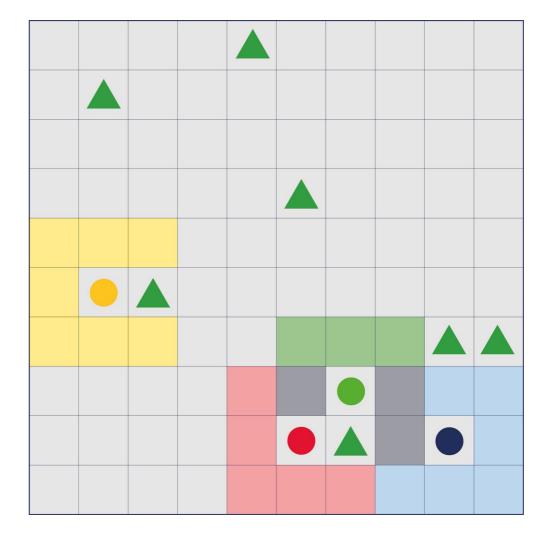


Actions

Reward function

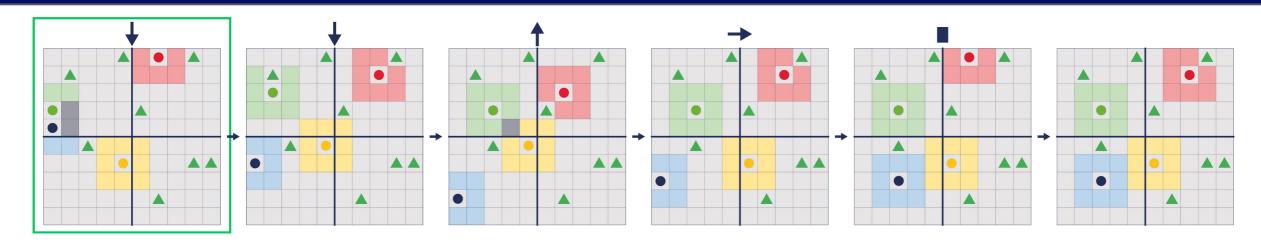
- +3 or +0.25 * |fc|
- -1 per drone in view range
- -3 in crash case

Algorithm Deep Q Network (DQN)



Predicates (Local / Global) maximum reward, perfect cover, no drones, crash, region

Global region



Time-step	0	1	2	3	4	Run-time (s)
Exh	0.819	0.025	0.0	0.0	0.005	21.22
1L	0.826	0.025	0.0	0.0	0.011	11.42
2L	0.837	0.025	0.0	0.0	0.0	4.62
3L	0.86	0.025	0.0	0.0	0.0	1.66
4L	8.0	0.025	0.0	0.0	0.0	0.53