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Abstract. The visual exploration of high-dimensional (HD) data has
gained popularity through the use of dimensionality reduction (DR) tech-
niques such as t-SNE and UMAP. However, the interpretability of low-
dimensional (LD) embeddings produced by these nonlinear methods re-
mains a challenge. Conversely, linear methods such as PCA are natively
interpretable but fall behind regarding DR quality. To circumvent this
trade-off, post-hoc interpretability methods have been introduced, where
simpler models are used a posteriori to explain LD positions in terms of
HD features. While these approaches can provide explanations for non-
linear DR methods without compromising DR quality, their downside is
that they rely on approximations of the original LD embeddings which
can lead to misinterpretations. In this paper, we propose a novel solu-
tion to the trade-off between DR quality and interpretability: a natively
interpretable version of t-SNE. The key idea is to express the coordi-
nates of each LD point as individual linear combinations of HD features
and use regularization to promote local coherence of the various linear
combination weights across the embedding. Experimental results demon-
strate the effectiveness of our method in preserving HD structures while
providing LD embeddings that are interpretable by design.

Keywords: t-SNE · Interpretability · Nonlinear dimensionality reduc-
tion · Parametric mappings · Data visualization · Explainability.

1 Introduction

Visual exploration of high-dimensional (HD) data is nowadays popularly con-
ducted thanks to dimensionality reduction (DR) methods such as t-SNE [25]
and UMAP [26]. Faithfulness of low-dimensional (LD) embeddings with respect
to HD coordinates is recognized as being related to the reproduction of HD neigh-
borhoods in the LD space [35]. Several paradigms exist to create LD representa-
tions of HD coordinates [22]; for instance, principal component analysis (PCA)
[15] and classical metric multidimensional scaling (MDS) [7] compute linear pro-
jections of HD data, while methods like stress-based multidimensional scaling
[31] and locally linear embedding [30] formalize nonlinear mappings through
weighted distance preservation and HD affinity matrices. More recent methods
of neighbor embedding (NE) [14], however, often outperform other paradigms
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stunningly in tasks of HD data visualization thanks to their shift invariance prop-
erty [19]. This property alleviates the norm concentration phenomenon [13] that
heavily affects DR quality of more traditional approaches [23] [32]. A large num-
ber of NE techniques were hence introduced, including t-SNE [25], UMAP [26],
perplexity-relieved extensions [20] [3], methods optimizing arbitrary divergences
[9], heavy-tailed similarities [38], hybrid NE-MDS schemes [17], hierarchical ap-
proaches [29], supervised variants [12] [4], scalable accelerations [24] [6] [33] [39],
missing data treatment [5], fast optimizations [36] [28] [10], etc.

Although yielding particularly relevant LD representations of HD samples,
NE algorithms are genuinely nonlinear, hindering the interpretability of the em-
beddings; it is indeed usually difficult or even impossible to relate the computed
LD axes to the HD dimensions [37]. This challenge arises as soon as one em-
ploys a nonlinear DR (NLDR) method that is not natively interpretable; while
linear projections naturally provide weights that enable interpretation of LD co-
ordinates in terms of HD features, nonlinear transformations of HD dimensions
inevitably result in less intuitive LD components. On the other hand, methods
of NLDR are typically largely better than linear mappings at reproducing HD
structures in LD embeddings [23]; some sort of trade-off between (NL)DR quality
and interpretability is therefore unavoidable.

Interpretability in DR is highly sought-after as it may lead to meaningful in-
sights and allows for informed analysis of high-dimensional data representations.
This is why methods emerged to analyze NLDR results a posteriori [2] [18] [1],
commonly referred to as post-hoc interpretability or explanation: given a set of
LD coordinates determined thanks to NLDR, one relies on several simpler, di-
rectly interpretable models such as decision trees or linear regressions, to locally
explain the LD positions in terms of HD coordinates. The convenience of such
an approach stems from its decoupling of the above trade-off; the responsibility
of ensuring faithfulness of the LD embedding with respect to the HD data is
left to the method of NLDR alone, while interpretability is sought afterwards.
The downside is, however, immediate, as one only interprets an approximation
of the NLDR result, instead of the actual LD positions directly. Accuracy of ex-
planations is obviously degraded for LD points with large approximation errors.
Increasing the number of local explanations, each with a reduced span in the LD
space, bounds the amplitude of local approximation errors, but as contiguous
explanations do not necessarily agree, their interpretation as a whole becomes
difficult, which conflicts with the initial goal of interpreting the LD embedding.
This other kind of trade-off, balancing accuracy and essentiality (i.e., limited
number) of local explanations, brings an insightful view on post-hoc approaches:
given a LD embedding with fixed NLDR quality as input, an additional approx-
imation step is conducted, in which accuracy of local explanations is balanced
with their essentiality.

One may then wonder whether users should instead be able to directly trade-
off NLDR quality with essentiality of local explanations, hence skipping the ad-
ditional approximation stage and the concept of accuracy of local explanations
with respect to approximation errors. Such an observation calls for NLDR meth-
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ods that are natively interpretable; coherence (leading to essentiality) of local
explanations across the LD embedding should be explicitly accounted for by the
NLDR method itself when tuning the LD coordinates to maximize DR quality.
When facing real-world, complex data visualization tasks, maximizing DR qual-
ity usually provides LD representations with highly varying local explanations,
hence less coherent across the LD embedding. On the other hand, enforcing co-
herence of local explanations, favoring their essentiality, hurts DR quality. A
natively interpretable method of NLDR would then enable users to consciously
balance between the desired DR quality and explanation coherence.

This paper therefore introduces a natively interpretable version of a perplexity-
free extension of t-SNE, known as multi-scale t-SNE (Ms t-SNE) [6]. Multi-scale
t-SNE is a non-parametric NE algorithm that efficiently preserves both local
and global HD data structures in LD embeddings. When seeking to develop a
natively interpretable version of multi-scale t-SNE, one can first notice that any
non-parametric method of NLDR may become parametric using any explicit
mapping from the HD to LD space [8]: instead of optimizing the LD embed-
ding with respect to the LD coordinates, one simply needs to optimize it with
respect to the mapping weights. In the context of interpretability, in particular,
a directly interpretable mapping may be chosen, such as a linear regression for
instance; such a parametric version of Ms t-SNE is denoted by Ms t-SNE [W ],
with W the weights of the linear mapping from the HD to LD space. Being easily
interpretable, Ms t-SNE [W ] further improves HD neighborhood preservation in
the LD embedding compared to DR methods that also compute a linear projec-
tion from the HD to LD space, like PCA. However, genuine, non-parametric Ms
t-SNE largely outperforms Ms t-SNE [W ], especially regarding the preservation
of local HD structures, as demonstrated in the experiments of this paper. Such
a behavior is natural; Ms t-SNE [W ] is in fact absolutist at the left end of the
’coherence’ - ’DR quality’ spectrum: defining a single W over the entire LD em-
bedding forces perfect coherence of explanations across the whole LD space, at
the expense of DR quality, as sketched above.

In order to span the full ’coherence’ - ’DR quality’ spectrum, we present Ms
t-SNE [Wi], as a natively interpretable version of Ms t-SNE. For each HD data
point, indexed by i, linear regression weights Wi are computed to determine the
associated LD coordinates. Coherence of Wi for i across the LD embedding is
tailored by a dedicated coherence term, added to the cost function of Ms t-SNE,
to explicitly encode the trade-off between DR quality and explanation coherence.
The hyper-parameter binding these two terms in the cost function of Ms t-SNE
[Wi], enables users to explore the ’coherence’ - ’DR quality’ spectrum from end
to end. A L1 regularization is further considered for weights Wi, to favor sparse
explanations. To the best of our knowledge, Ms t-SNE [Wi] is the first natively
interpretable method of NE.

An illustrative example of the proposed Ms t-SNE [Wi] applied on the adult
mouse cortex dataset [34] is depicted in Fig. 1. One can first observe that
the obtained 2D embedding of cellular biology data is consistent in terms of
displayed HD structures: non-neurons are separated from neurons; inhibitory
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neural cells can be distinguished from excitatory ones, and similar colors are
generally grouped together. This suggests that Ms t-SNE [Wi] can achieve high
DR quality. It is noteworthy that the considered data set is preprocessed as
in [16]; in particular, a PCA is first performed and only the first 50 principal
components are provided to Ms t-SNE [Wi]. Interpretations, in terms of linear
weights Wi, are displayed for 3 randomly selected data points, along with the
associated HD features, which are principal components. As the 2D embedding
gets initialized with the first two principal components of the data set, PC1 (resp.
PC2) is always the most important feature according to W

(x)
⋆ (resp. W (y)

⋆ ), as
expected. The remaining most important HD features vary from one selected
data point to another, highlighting that the delivered explanations are adapted
according to the actual position of the selected LD point and are hence not
constant across the entire LD embedding.

This paper is structured as follows: Section 2 first reviews t-SNE and multi-
scale t-SNE, in their original, non-parametric versions, as well as convenient DR
quality criteria. Section 3 then details our proposed Ms t-SNE [Wi] algorithm,
while Section 4 reports experimental results assessing its behavior and quantify-
ing its sensitivity with respect to the coherence and L1 regularization terms in
its cost function. Section 5 finally draws conclusions and outlines further works.

Fig. 1. 2D embedding of the adult mouse cortex dataset [34] as produced by our in-
terpretable Ms t-SNE [Wi]. Cluster assignments and colors are taken from the original
publication [34]. Warm colors correspond to inhibitory neurons, cold colors to excita-
tory neurons, and brown/greyish colors to non-neural cells. Explanations are provided
for randomly selected points, depicted as stars. For each of these points, we only display
the top five weights (in absolute value) of the local linear mapping W⋆ from HD fea-
tures to the LD coordinates, and the associated HD features. W (x)

⋆ denotes the weights
that map to the x-coordinate; W (y)

⋆ the weights that map to the y-coordinate. Negative
and positive weights are represented with magenta bars to the left and green bars to
the right, respectively. The length of these bars is proportional to the absolute value
of the weight, i.e., the importance of the corresponding feature in the explanation.
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2 t-SNE, Multi-scale t-SNE, and DR quality criteria

Given N points {ξi}
N
i=1 in M dimensions, DR aims at representing them as

{xi}Ni=1 in P dimensions, with P ≤ M . Distance between ξi and ξj (resp. xi and
xj) is denoted by δij (resp. d ij). Instead of preserving distances, the main idea
of t-SNE is to preserve neighborhoods of points, modeled through the definition
of pairwise similarities [25]: for i ∈ I := {1, . . . ,N } and j ∈ I\{i},

σij∗ =
exp

(
−πi∗δ

2
ij/2

)∑
k∈I\{i} exp

(
−πi∗δ

2
ik/2

) , t ij =

(
1 + d2

ij

)−1∑
k∈I,l∈I\{k}

(
1 + d2

kl

)−1 (1)

where precision πi∗ is determined to secure a user-identified perplexity K ∗, re-
lated to the granularity of HD structures one wishes to preserve [14].

The LD coordinates are then adjusted through gradient-based minimization
of the t-SNE cost function:

{xi}Ni=1 : min
xi,i∈I

C ∗ =
∑

i∈I,j∈I\{i}
τ ij∗ log (τ ij∗ /t ij ) (2)

where τ ij∗ = (σij∗ + σji∗) / (2N ) are symetrized and normalized HD similarities.
Defining HD similarities that rely on a single perplexity value K ∗ limits

the NE method capability to capture both local and global HD structures in
the LD embedding [20]. Multi-scale t-SNE hence computes HD similarities with
exponentially increasing perplexities [6]: for h = 1, . . . ,H = ⌊log2 (N /2)⌉, with
H the number of scales and ⌊·⌉ denoting rounding,

σijh =
exp

(
−πihδ

2
ij/2

)∑
k∈I\{i} exp

(
−πihδ

2
ik/2

) (3)

with πih set as previously thanks to perplexities K h = 2h [20], targeting local to
global data scales. Averages across scales then enables retrieving both local and
global properties of HD data:

σij = H−1
∑H

h=1
σijh, τ ij = (σij + σji) /(2N ) . (4)

Multi-scale t-SNE minimizes C =
∑

i∈I C i, with C i = −
∑

j∈I\{i} τ ij log t ij [3].
Besides tuning LD embeddings, assessing their quality typically amounts to

evaluating their reproduction of HD neighborhoods [11] [27] [35]. Established
criteria [23] quantify this preservation, by first computing the sets νKi and nK

i

of K nearest neighbors of ξi and xi, for i ∈ I. Their average agreement is

QNX (K) = (NK)
−1

∑
i∈I

∣∣νKi ∩ nK
i

∣∣ ∈ [0, 1] . (5)

As E [QNX (K)] = K/ (N − 1) for random LD coordinates, rescaling QNX (K),

RNX (K) = ((N − 1)QNX (K)−K) /(N − 1−K) , (6)

eases performance comparison for distinct K. Log-scale for K is employed to
depict RNX (K), to emphasize smaller neighborhoods [21]. The area AUC under
the obtained curve is proportional to DR quality, assessed at all scales, with a
particular attention on smaller ones [20].
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3 Natively interpretable Multi-scale t-SNE

Following our approach to interpretable neighbor embedding, we focus on the
key ideas and subsequent design choices that underpin the mathematical formu-
lation of our model. We aim at enabling interpretability of a NLDR method,
specifically Ms. t-SNE, without relying on post-hoc explanation techniques. In
this work, any method of DR qualifies as interpretable if it allows LD embedding
coordinates to be expressed in terms of HD features. Additionally, we require
this explicit relationship between HD features and LD coordinates to be easily
understandable and reasoned about by fellow humans 1.

Notice that linear models, unlike nonlinear ones, serve this purpose very
well: they are interpretable by design and the weights of the model are naturally
simple explanations indeed for the model output in terms of its inputs. In the
context of DR, PCA stands out as the most widely used linear method. For
2-D visualizations, the data is projected on the first two principal components
such that the variance is maximally preserved. Coordinates in the LD embed-
ding are thus linear combinations of HD features and the weights of these linear
combinations, which can be viewed as parameters, are what makes PCA na-
tively interpretable. A first natural idea for achieving our objective would then
be to introduce parameters in the otherwise non-parametric and non-natively
interpretable Ms t-SNE. Bunte et al. showed in [8] that any non-parametric DR
method can be made parametric by defining a parametric mapping from the HD
space to the LD space and optimize for the parameters of this mapping instead
of directly optimizing for the LD coordinates. Hence, following our previous idea,
we can express LD coordinates as a linear combination of the HD features:

xi = WT ξi ∀i ∈ I (7)

and optimize the standard cost function of Ms t-SNE with respect to W . The
weight matrix W can be initialized at random, or conveniently, with easy-to-
compute PCA weights. While optimizing the cost function of Ms t-SNE in this
setting would likely produce better result than PCA in terms of neighborhood
preservation, this first parametric method of NE remains a simple linear projec-
tion. The global weight matrix W , uniformly applicable to all points, imposes
excessive constraints that completely undermine the local nature of Ms t-SNE.
To embrace local aspects of Ms t-SNE while maintaining interpretability, we
propose to define an individual weight matrix for each sample:

xi = WT
i ξi ∀i ∈ I . (8)

As before, we optimize the standard cost function of Ms. t-SNE:

C =
∑
i∈I

C i . (9)

1 This is a stronger requirement than interpretability alone, and it is rather referred
to as explainability in the literature. In this work, however, we do not sharply dis-
tinguish between the two concepts. We use a collection of local linear models; our
method is thus interpretable by design, and the different weights can be understood
as explanations for the LD embedding.
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This simple, yet key idea of individual linear projection is our main contribution.
It allows us to construct an interpretable and efficient version of Ms t-SNE. This
benefit comes at a cost, though, and a new potential difficulty arises: while a
single weight matrix led to an under-parametrized optimization problem, indi-
vidual weight matrices yield an over-parametrized problem. This can jeopardize
convergence in the numerical optimization problem and cause interpretability
issues: with so many degrees of freedom, the model may provide arbitrary, ir-
relevant, or incomprehensible explanations. We address these issues and avoid
ill-posed optimisation problems with regularization.

On the one hand, to ensure sensible interpretation of the visualization ob-
tained through Ms t-SNE, we would like to have coherent explanations: two
points that are similar in the LD space should have similar explanations. In
mathematical terms, if two points xi and xj are such that t ij is big, then the
difference between Wi and Wj should be small. We enforce this by adding a first
regularization term to the standard cost function of Ms t-SNE:

C =
∑
i∈I

(
C i + α ·

∑
j∈I\{i}

t ij ||Wi −Wj ||F
)

, (10)

where || · ||F is the Frobenius norm and α is a weighting factor that allows users
to tune the strength of the regularization.

On the other hand, we may also desire simple explanations. Here, simple
means that LD coordinates can be explained based only on a few significant
HD features. In mathematical terms, this corresponds to sparse explanations,
characterized by weight matrices Wi with a low L1 norm. We enforce this by
adding a second regularization term to the cost function of Ms t-SNE:

C =
∑
i∈I

(
C i + α ·

∑
j∈I\{i}

t ij ||Wi −Wj ||F + β · ||Wi||1
)

, (11)

where β is a weighting factor that controls the sparsity of the explanations.
Equation (11) provides the final formulation of our natively interpretable Ms

t-SNE. The user can adjust the hyper-parameters α and β to obtain different em-
beddings with different characteristics and hopefully gain more insights through
multiple views of the data. Once the model is fitted, explanations for each point
in the embedding can be accessed in real time, with no further computations
needed. One may finally wonder about the essentiality of the local explanations.
To reason about this concept, we introduce the coherence coefficient:

κij = ||Wi −Wj ||F . (12)

Given some point i, if κij ≈ 0 for all points j in a consistent region around xi,
we consider that the explanations within this region are locally coherent and we
call the region a coherence region. Having larger coherence regions with fewer
differences between them is synonymous with explanation essentiality.
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4 Experiments

We now conduct a series of three experiments to assess the quality of neighbor-
hood preservation and gauge the effective model interpretability under various
model configurations. Furthermore, the goal of the first experience in Section 4.1
is to provide empirical validation for the reasoning presented in Section 3 and
convince the reader that the design choices are sound. In the second and third ex-
periences, we evaluate the influence of coherence hyper-parameter α and sparsity
hyper-parameter β, in Sections 4.2 and 4.3, respectively.

We conduct all three experiments on the adult mouse cortex dataset from
[34]. This dataset contains gene expression levels for 23822 cells from adult mouse
cortex. Each data point can be classified into one of three main classes (and
many other subclasses): excitatory neurons, inhibitory neurons, and non-neural
cells. The data was preprocessed as in [16], including a normalization step, a
feature selection step, a log transformation, and a PCA retaining only the 50
first principal components (mainly for computational efficiency). Additionally,
we randomly subsample the data to obtain a final dataset of 3000 points. We
implement our interpretable Ms t-SNE model following equations from Sections 2
and 3, and we take advantage of pytorch for automatic gradient computation.
For all experiments, we use the Adam optimizer with a learning rate of 0.01 and
carry out optimization for 1000 iterations. The weight matrices are all initialized
with PCA weights. If not stated otherwise, the default values for α and β are
106 and 102, respectively.

4.1 Balancing DR quality and interpretability

In this first experiment, we compare the different methods described throughout
Section 3: PCA, Ms t-SNE [W ] with a unique weight matrix, Ms t-SNE [Wi]
with one weight matrix per sample, and the original, non-parametric version of
Ms t-SNE [−]. These are all key components of our rationale and our goal is to
verify that our theoretical arguments hold in practice. If it is the case, then we
can be more confident in the effectiveness of our proposed approach. Embeddings
generated by the various methods are displayed in Fig. 2, and RNX (K) curves
are drawn in Fig. 3.

Fig. 2. 2-D embeddings of the adult mouse cortex dataset. From left to right : PCA,
Ms t-SNE with a unique weight matrix, Ms t-SNE with one weight matrix per sample,
standard Ms t-SNE. Cluster assignments and colors are taken from [34].
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PCA demonstrates the best global neighborhood preservation. It is clear both
from the dominating curve in the rightmost part of the RNX (K) plot, and from
the visualization of the embedding in which excitatory neurons, inhibitory neu-
rons, and non-neural cells are well separated. While the unique linear mapping
makes PCA natively interpretable and provides straightforward explanations, it
strongly hinders the preservation of local neighborhoods and is responsible for
a phenomenon of overlapping points [22]. The idea behind Ms t-SNE [W ] was
to take inspiration from the linear mapping of PCA, for its straighforward in-
terpretability, but to optimize a standard Ms t-SNE cost function in the hope
of achieving better local DR quality. Ms t-SNE [W] mitigates the overlap phe-
nomenon to some extent and it better preserves mid-size neighborhoods, around
K = 102 on the RNX (K) plot. Nevertheless, as with PCA, its unique linear
mapping appears to be the limiting factor for preserving even more local neigh-
borhoods.

The next logical step was thus to put aside this limiting unique linear map-
ping, and introduce an individual weight matrix per sample. This key aspect
allows Ms t-SNE [Wi] to show drastic improvement in local neighborhood preser-
vation, without significant loss in global neighborhood preservation. It retains
native interpretability, though the pointwise explanations may not be as straight-
forward as a unique and global explanation. Finally, as expected, the original
version of Ms t-SNE performs best for overall neighborhood preservation, but it
is not natively interpretable. All these results back our rationale up and they val-
idate our design choices empirically. Moreover, we observe that interpretable Ms
t-SNE [Wi] performs almost on par with the standard, non-natively intepretable
Ms t-SNE in terms of RNX (K). This motivates further experiments to under-
stand in which conditions this happens and, in particular, how the choice of α
and β influences performance and explanations.
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36.97 Ms.t-SNE [W ]
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Fig. 3. For each compared method, the RNX (K) curve quantifies DR quality in terms
of average K-ary neighborhoods agreement in HD and LD. The higher RNX (K), the
better. The AUCs stand in the legend in front of each method name.
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4.2 Balancing DR quality and explanation essentiality

In this second experiment, we look at the effect of the coherence hyper-parameter
α on the embedding, both in terms of DR quality and explanations. We fix β
to 102 and test the following increasing values for α: {106, 107, 108, 109}. All
other hyper-parameters are held constant. Quality curves are drawn in Fig. 4,
while embeddings and explanations are displayed in Fig. 5. All explanations are
provided for a randomly selected data point ⋆. In the left column, we color every
other point j in the embedding according to the value of κ⋆j (normalized within
the interval [0,1]). The coherence region of x⋆ is formed by the points colored in
brown. In the middle column, we display the top 5 weights along each axis; these
are the weights in W

(x)
⋆ (resp. W (y)

⋆ ) with maximum absolute value. For each
axis, we also select one of the top weights and its associated HD feature, and we
represent in the right column how they are distributed in the embedding.

The results illustrate well the trade-off between DR quality and explana-
tion essentiality, and how users could decide where they want to be across the
spectrum by tuning α. As we increase α, we notice a significant decrease of
the RNX (K) for low values of K indicating a worse preservation of local neigh-
borhoods. Concurrently, we observe on the 2D visualizations larger coherence
regions, leading to essentiality, with an embedding shape evolving towards what
Ms t-SNE[W ] and PCA would have yielded. This is expected, as a large α en-
forces each Wi to converge to a similar and unique value W acting as a global
explanation for the embedding. For smaller values of α, different HD features are
responsible for explaining local structures in different parts of the embedding.
As an example, in the case α = 106, we see that PC8 and PC10 are almost only
important in the cluster around point x⋆. Notice, however, that PC1 and PC2
remain the most important HD features across all values of α, highlighting the
fact that our method can capture a hierarchy of explanations.
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34.61 Ms.t-SNE [Wi] α = 109
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Fig. 4. Quality curves for Ms t-SNE[Wi] with different values of α. Each RNX (K) curve
quantifies DR quality in terms of average K-ary neighborhoods agreement in HD and
LD. The AUCs stand in the legend in front of each model configuration.
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Fig. 5. Embeddings of the adult mouse cortex dataset [34] as produced by our in-
terpretable Ms t-SNE [Wi] for various values of the coherence hyper-parameter α, and
explanations for a selected point ⋆. In the left column, we color the coherence region
of x⋆ in brown. In the middle column, we display the top five explanations along each
axis, and the corresponding HD features. In the right column, for each axis, we visualize
how a chosen feature and its corresponding weight are distributed in the embedding.
These small visualizations should help understand in which region of the embedding a
given HD feature is the most important to explain the position of LD points. Magenta
corresponds to negative values and green to positive values.
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4.3 Balancing DR quality and explanation simplicity

In this third experiment, we assess the effect of the sparsity hyper-parameter β
on the embedding, both in terms of DR quality and explanations. We fix α to
106 and test the following increasing values for β: {101, 102, 103, 104}. All other
hyper-parameters are held constant. Quality curves are drawn in Fig. 6, while
embeddings and explanations are displayed in Fig. 7. The results illustrate an
additional trade-off between DR quality and explanation sparsity/simplicity. As
we increase β, we notice a significant decrease of the RNX (K) for low values
of K. This is expected as less freedom for adjusting Wi hinders the ability to
preserve local neighborhoods. On the other hand, we note that fewer weights are
non-zero, simplifying the explanations.

Another behavior can be highlighted: for larger values of β, we also observe a
decrease in RNX (K) for high values of K and a small increase in mid-range values
of K, corresponding roughly to the size of the clusters. This translates into a
‘leveling’ effect, whereby the mean/global explanations get somehow substracted
from local explanations, and the focus is shifted towards cluster specificities. This
is striking for the case β = 104 where the most important feature for explaining
both x and y LD coordinates is PC3, whereas it was only the second most
important in all other configuration, behind the globally important PC1 and
PC2. An alternative way to think about this effect is that for reasonable values
of α, the model has enough flexibility to produce local explanations, although a
high β makes it focus on very few features, which limits its capacity to accurately
preserve local neighborhoods. The best compromise for DR quality is thus to
focus on mid-size neighborhoods (i.e., clusters), and explain these with local
information. While these model configurations do not lead to the best DR quality,
they may still be worth exploring for insights about individual cluster structures.
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Fig. 6. Quality curves for Ms t-SNE[Wi] with different values of β. Each RNX (K) curve
quantifies DR quality in terms of average K-ary neighborhoods agreement in HD and
LD. The AUCs stand in the legend in front of each model configuration.
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Fig. 7. Embeddings of the adult mouse cortex dataset [34] as produced by our in-
terpretable Ms t-SNE [Wi] for various values of the sparsity hyper-parameter β, and
explanations for a selected point ⋆. In the left column, we color the coherence region
of x⋆ in brown. This region may consist in several non-contiguous smaller parts when
groups of data points have similar weights for a set of HD features, but very different
values for those same features. In the middle column, we display the top five explana-
tions along each axis, and the corresponding HD features. In the right column, for each
axis, we visualize how a chosen feature and its corresponding weight are distributed in
the embedding. Magenta corresponds to negative values and green to positive values.
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5 Conclusion

In this work, we tackle the challenge of interpretability in methods of nonlinear
dimensionality reduction for visualization of high-dimensional data. We intro-
duce a novel, natively interpretable version of multi-scale t-SNE. This perplexity-
free neighbor embedding method is non-parametric in its original formulation,
but the key to our approach is precisely to incorporate a linear parametric map-
ping from each HD data point to its LD counterpart. We then optimize the
cost function with respect to the parameters of the mappings instead of the
LD coordinates directly. Using linear mappings makes our multi-scale t-SNE na-
tively interpretable and using one mapping per point offers greater flexibility in
comparison to other natively interpretable approaches that use a single global
mapping, such as PCA or our other variant of Multi-scale t-SNE [W ] with a
unique weight matrix. This flexibility translates in better DR quality, but neces-
sitates to add a regularization term in the cost function to enforce coherence of
the local explanations across the embedding, and thus essentiality of explana-
tions. By tuning this regularization term, the user can explore the full spectrum
of the trade-off between DR quality and explanation essentiality. L1 regulariza-
tion can also be applied in order to encourage sparse explanations. Experiments
demonstrate the effectiveness of our approach: for an appropriate tuning of the
regularization terms, we are able to provide an embedding with coherent and
simple explanations while sacrificing very little in DR quality.

In future research, we aim to gain a deeper understanding of the capabilities
and limitations of our approach by applying it to a broader range of datasets, as
well as comparing it with various other methods using diverse evaluation met-
rics. A normalized version of the regularization hyper-parameters would greatly
facilitate this more comprehensive assessment. Other potential directions of re-
search include investigating alternative regularization schemes and optimization
heuristics, like dynamic weighting of the different terms in the cost function, for
further improving DR quality and explanations. Ultimately, one may also con-
sider quantifying the trustworthiness of the provided explanations themselves
and whether or not they are relevant in the domain of application. Devising
criteria measuring relevance would indeed enable users to trust their analyses
of LD embeddings. In such an endeavor, value would emerge eventually from
applying our method to real-world datasets and seeking feedback from domain
experts about the explanations that our natively interpretable multi-scale t-SNE
provides.
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