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Goal & Contribution
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› Architecture-agnostic concept-based comparison 

of feature space semantics across models

› Supervised (ranking-based) and unsupervised 

(saliency-based) semantic similarity metrics

› Study and comparison of learned semantics in

layers of several object detection CNNs

September 16, 2023

Goal: Semantic Comparability of DNNs for informed model selection
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Concept analysis
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(Semantic) concept associates vectors in latent space to input regions

› Concept Activation Vector (CAV) [1] indicates the orientation of the concept within the feature space

› Concepts vectors enable the measurement of concept attribution in samples
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Concept-based semantics comparison
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Indirect feature space comparison via semantic concepts and sample attributions
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Concept-based semantics comparison
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Unsupervised Concept Similarity

› Saliency-based

› Are there similar concepts in feature spaces of different layers?

› How similar are concepts?

Supervised Feature Space Similarity

› Based on similarity ranking

› How similar is the arrangement of feature spaces in compared layers with respect to given 

concepts?
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Saliency-based Unsupervised Concept Similarity
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Aim:

› Discover & compare important concepts

Similarity Estimation:

› Concept Attribution → Projection (mask) [2]

› Unsupervised Concept Similarity → IoU:

UCSi,j =
1
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M – concept projection mask, N – number of test 

samples, IoU(-,-) – Intersection over Union
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Ranking-based Supervised Feature Space Similarity
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Aim:

› Compare latent spaces around given concepts

Similarity Estimation:

› Concept Vector [1] → Pivot

› Concept Attribution → Cosine Similarity 

› Supervised Feature Space Similarity → Rank Order:

SFSSu,v =
1
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CS∗,k
i = cos CAV∗

i, x∗,k ,∗ ∈ u, v

u,w – layers, M – number of concepts, N – number of test samples,

PCC(-,-) – Pearson Correlation Coefficient, cos(-,-) – cosine similarity, 

CAV∗
i – concept vector, x∗,k – sample

X1

CAV▲

X2

X3

cos_sim(CAV▲, X1)
cos_sim(CAV▲, X2)
cos_sim(CAV▲, X3)

…

X1

CAV+

X2

X3

cos_sim(CAV+, X1)
cos_sim(CAV+, X2)
cos_sim(CAV+, X3)

…

Rank Similarity

Feature Space 1

Feature Space 2

Similarity of feature spaces around CAVs



Internal

Lisboa, 2023 Public

Revealing Similar Semantics Inside CNNs: An Interpretable Concept-based Comparison of Feature Spaces

Experimental Setup
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Concept Analysis Methods:

› TCAV [1] – Supervised Similarity

› ICE [2] – Unsupervised Similarity, Concept Discovery

Data:

› CelebA [3] – Faces of celebrities 

› MS COCO [4] – «Person» class

› Synthetic concepts (generated from MS COCO)

Models (MS COCO):

› SSD – VGG backbone

› YOLOv5 – Residual backbone (DarkNet)

› FasterRCNN – Inverted residual backbone (MobileNetV3)
«Legs» Synthetic Concept Sample
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Results: Unsupervised Saliency-based Similarity
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› Test data diversity impacts the complexity of further inspection.

› Different (architecture-wise) networks learn similar concepts:

› Trained on MS COCO, discovered similar concepts in CelebA

Similar concepts in CelebA

Similar concepts in MS COCO
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Results: Unsupervised Saliency-based Similarity
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One-to-one concepts Several similar concepts No similar concepts

› Discovery of semantically identical layers:

› Some layers may have one-to-one correspondence in discovered concepts.
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Results: Unsupervised Saliency-based Similarity
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› Estimation of relative concept robustness:

› By changing the binarization threshold (BT) of concept projection masks

Concept masks for different BTConcept similarity (robustness) for different BT
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Results: Supervised Ranking-based Similarity
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› Semantic similarity is primarily influenced by the layer’s relative depth

› Networks can be compared by comparing set of evenly depth-distributed layers

Layer-wise similarity of every convolutional layer of SSD and YOLO5
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Results: Supervised Ranking-based Similarity
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› Simpler concepts (from CelebA) 

result into higher similarity

› Simpler concepts recognized in a 

wider range of layers

› Network backbones exhibit 

different semantical behavior

› RCNN (MobileNetV3) 

propagates tested semantics 

more efficiently 

Feature Space Similarity: SSD vs. RCNN vs. YOLO5



Internal

Lisboa, 2023 Public

Revealing Similar Semantics Inside CNNs: An Interpretable Concept-based Comparison of Feature Spaces

Conclusion
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Summary:

› Proposed architecture-agnostic methods and metrics for estimating the similarity of feature 

spaces of CNN backbones.

› Explored how semantic information is processed in various model backbones.

› Identified similar concepts semantically similar layers

› Discovered that semantic information depends on the relative layer depth.

Future work:

› Apply our approach to further large NN architectures, e.g., transformers, and other visual tasks 

than object detection

› Try alternative methods of concept extraction
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