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Interpretability and Tree Ensembles

A function is interpretable if it is human-simulatable [1]. Eg. sparse-linear
models, small decision trees, nearest neighbors etc.

Tree ensemble methods combines potentially overlapping rules [2, 3]. 

This increases the predictive performance, but it causes a trade-off with 
interpretability [4]. 

Compressing ensambles reduces the number of nodes, hence the used 
rules for evaluation, and increases the interpretability of the model



• Remove full trees and subtrees from the model
• Refit the leaf values
• Use logistic regression and L1 regularization to fit:

coefficient × subtree + bias

• Lossy compression  non-equivalence preserving→
• Cut out unnecessary parts of the model
• Allow no more than X% performance loss on validation set (e.g., 5%)

Compress large models to obtain
smaller models that are more interpretable

Idea



How to fit                                           for all nodes  n  at depth  d ?
Logistic regression + L1 regularization

1 if xi passes through nk,
else 0

leaf value reached by xi in 
subtree if  1|nk(xi)=1 ,else 0

c × fn(x) + b

depth d +       + +bKcK×+b1c1× Age < 50 Height < 200...



depth 0 (root)

c × fn(x) + b

c3×c2×c1× + b2 + b3+ b1

Tree ensemble compression: Top-down tree pruning
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Layer-per-layer, fit coefficient + bias:                                                   using L1
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c1 × 4 + b1 c1 × 12 + 
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depth 1

Tree ensemble compression: Top-down tree pruning
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Pruned away when c4 = 0 
and replaced by leaf:
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c2 × 6 + b2 c2 × 13 + 
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c × fn(x) + bLayer-per-layer, fit coefficient + bias:                                                   using L1



depth 2

Tree ensemble compression: Top-down tree pruning
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c × fn(x) + bLayer-per-layer, fit coefficient + bias:                                                   using L1

We count: 5: number of remaining leaves
3: number of non-zero leaves (nnz-leaves)



Experimental Questions

• What is the performance in terms of compression and the effect of 
compression on predictive performance?

• What is the trade-off between model size and predictive performance? 

• What is the computational complexity to produce the smaller ensembles?Experimental Setting

• Experiments are with XGBoost

• Train models on 15 binary classification datasets using a different selection of 160 
hyper-param settings in the grid.

• Select a set of up to 20 good parameter settings from the subset of hyper-parameter 
settings that is Pareto optimal in at least one fold among 5-folds.



Baselines

• xgblrl1: Retrained XGBoost model with L1 regularization.

• gr:  Global refinement [5]  combines leaf refinement with L2 regularization 
and a simple pruning strategy. Operates at the finest extreme: it only 
considers the leaf level.

• ic: Individual contribution [6] is a standard technique for pruning trees from 
tree ensembles. It represents the other coarsest extreme: it only operates at 
the tree level.

• lrl1: Combines leaf refinement and ensemble pruning with L1 regularization 
[7]. Combines the two extremes (coarse tree level + finest leaf level), but 
does not work at the subtree level as our method does.



Q1: Compression quality: compression ratio and difference in 
predictive performance.



Q2: The model-size and predictive performance trade-off



Q3: Computational cost: how long does it take to compress an 
ensemble



Conclusion

• We proposed a novel technique for compression that is much more 
effective at compressing models than existing approaches. 

• Moreover, each compressed model performs similarly to its 
uncompressed counterpart. 

• Compression techniques are helpful when exploring a model size vs. 
performance trade-off. 

• Often the final epsilon improvement comes at the cost of substantially 
larger models. This has important implications for interpretability.
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