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MOTIVATION

Why?

▶ Understanding predictions.
▶ Model debugging and validation.
▶ Discovering new biological insights.
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MOTIVATION

Two main approaches

▶ Non-formal verification methods.
• LIME, Deeplift, SHAP, etc.

▶ Formal verification methods.

Some limitations!

▶ Susceptible to adversarial attacks.
▶ Quality of explanations.
▶ Incorrectness or incompleteness of explanations.

Formal
Verification

Constraint
based

Abstraction
based

Complete verification
Comp. hard problem
Guarantees
MILP, SMT, ASP, ...

Approximate verification
Partial guarantees
Over-approximation
Relaxation, Intervals, ...

Narodytska et al. 2019; Al-Shedivat, Dubey, and Xing 2018
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BACKGROUND
CLASSIFIER

A classifier is a tuple (X,D,C, κ):
▶ X is a set of distinct features x1, . . . , xn taking values from D1, . . . ,Dn for n > 0.
▶ F is the feature space D1 ×D2 × · · · ×Dn.
▶ C is a set of distinct classes c1, . . . , cm for m > 0,
▶ κ is a classification function mapping F to C.

An instance is a pair (v, c) where v ∈ F, c ∈ C, and c = κ(v).
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BACKGROUND
ARTIFICIAL NEURAL NETWORK

▶ Each neuron perform this action:

y = f (
n∑

i=0

wixi + b) (1)

where x0, x1, . . . , xn are the inputs, w0,w1, . . . ,wn are the weights associated with the respective
inputs, b represents the bias, y is the output of the neuron, and f is an activation function.
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BACKGROUND
WHY?

Definition (Abductive explanations)

An abductive explanation is a subset E ⊆ X whose values are fixed according to v such that the prediction is c
no matter the values of the remaining features:

∀x ∈ F s.t. [
∧

xi∈E

(xi = vi)] =⇒ (κ(x) = c) (2)

Note that we can equivalently write (2) as

¬∃x ∈ F s.t. [
∧

xi∈E

(xi = vi)] ∧ (κ(x) ̸= c) (3)

Note that this is weak explanation but if it is also subset minimal then it is an abductive explanation.
.

Marques-Silva 2022
6 / 23



APPROACH
THREE STEP PROCESS

▶ Build the neural network for a given problem.
▶ Represent the classifier in the form of a logic program.
▶ We use a deletion based algorithm to obtain explanations.

• Start with the initial set of features X which is an abductive explanation.
• Iteratively drop features from X while it is still an explanation.

Input : Classifier (X,D,C, κ) and instance (v, c)
Output: Subset minimal abductive explanation E

1 E← X;
2 for xi ∈ X do
3 if E \ {xi} is an abductive explanation then
4 E← E \ {xi};

5 return E;
Algorithm 1: Algorithm to subset minimize an abductive explanation
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APPROACH
ANSWER SET PROGRAMMING

▶ Declarative problem solving approach.
▶ What is the problem? versus How to solve the problem?
▶ Intelligence lies within the solver.
▶ Easy to understand.
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APPROACH
GRAPH COLORING PROBLEM

3 5

6

1 2

4

3 5

6

1 2

4

Facts:

node(1..6)←
edge(1, 2)← edge(1, 3)← edge(1, 4)← edge(2, 4)←
edge(2, 5)← edge(2, 6)← edge(3, 1)← edge(3, 4)←
edge(3, 5)← edge(4, 1)← edge(4, 2)← edge(5, 3)←
edge(5, 4)← edge(5, 6)← edge(6, 2)← edge(6, 3)← edge(6, 5)←

Rules and objective function:

{color(C)} ← node(C) (4)

1 {assign(U, C) : color(C)} 1← node(U) (5)

← edge(U, V) ∧ assign(U, C) ∧ assign(V, C) (6)

minimize{1, C : color(C)} (7)

Solution:

{assign(1, 1), assign(2, 3), assign(3, 3), assign(4, 2), assign(5, 1), assign(6, 2)}
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clingo[LP]

▶ Hybridized(ASP)
▶ Idea extend clingo with linear constraints over integers and reals (Janhunen et al. 2017).
▶ Features

• Linear constraints &sum.
• Objective function &minimize.
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EXAMPLE
0/1 KNAPSACK

a: 3.3kg/3.1$
  

b: 4.7kg/3.2$

c: 6.1kg/1.9$

d: 5.9kg/4.8$

9.1kg

item ( a ; b ; c ; d ) .
weight ( a,"3.3" ; b , " 4 . 7 " ; c , " 6 . 1 " ; d , " 5 . 9 " ) .
value ( a,"3.1" ; b , " 3 . 2 " ; c , " 1 . 9 " ; d , " 4 . 8 " ) .
load ( " 9 . 1 " ) .

{ pack ( I ) } : − item ( I ) .
&sum { I } = 1 : − pack ( I ) .
&sum { I } = 0 : − item ( I ) , not pack ( I ) .
&sum { W* I : weight ( I ,W) } <= L : − load ( L ) .
&maximize { P* I : value ( I , P ) } .
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EXAMPLE
0/1 KNAPSACK

Model :
item ( a ) item ( b ) item ( c ) item ( d )
load ( " 9 . 1 " )
pack ( a ) pack ( b )
value ( a , " 3 . 1 " ) value ( b , " 3 . 2 " )
value ( c , " 1 . 9 " ) value ( d , " 4 . 8 " )
weight ( a , " 3 . 3 " ) weight ( b , " 4 . 7 " )
weight ( c , " 6 . 1 " ) weight ( d , " 5 . 9 " )

Assignment :
a=1 b=1 c=0 d=0

Optimization :
6 . 3
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APPROACH
ASP ENCODINGS

A simple artificial neural network with one layer, weight matrix W1 =
(
1 1

)
, bias vector B1 =

(
0
)
,

and threshold t = 1.

Input Layer

x0,1

x0,2

Output Layer

x1,1

0

+1

+1

≥ 1

x0,1

x1,1

Figure. An ANN to classify an OR gate.

The input variables X = {x0,1, x0,2}, domains D1 = D2 = {0, 1}, classes {⊥,⊤}, and
κ(x0,1, x0,2) = threshold(relu(1 · x0,1 + 1 · x0,2 + 0), 1).
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APPROACH
ASP ENCODINGS

14 / 23



APPROACH
ASP ENCODINGS

15 / 23



BENCHMARKS
UCI MACHINE LEARNING DATASETS

▶ Build artificial neural networks with ReLU activation function.
▶ Encoding in the form of a logic programs with Boolean and linear constraints.
▶ Calculate explanations.

Time (s) Size

Dataset Features min avg max min avg max

Heart disease 13 0.33 3.84 3.84 4 10 13
Thyroid 16 0.34 18.91 59.77 6 8 16
Breast cancer 9 0.12 5.64 59.8 3 5 9
Diabetes 21 0.41 7.30 59.87 10 17 21
E. coli promoter 57 5.24 5.64 6.90 57 57 57
Voting 16 0.23 13.40 34.95 4 5 9

Table. Time to compute/size of explanations for machine learning datasets generated using ASP.
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BENCHMARKS
COMPARISON WITH LOGIC BASED APPROACHES

MILP ASP

Dataset min avg max min avg max

Heart disease 7 9 13 4 10 13
Breast cancer 3 5 9 3 5 9
Voting 3 5 11 4 5 11

Table. Explanation sizes for MILP and ASP-based approaches.
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BENCHMARKS
CONGRESSIONAL VOTING RECORDS FROM UCI MACHINE LEARNING REPOSITORY

Data description:
▶ 16 key votes (Yes or No) of 1984 U.S. House of Representatives
▶ Classes represent the party of the congressman : Republican or Democrat
▶ 435 instances with missing data

Neural network:
▶ 1 hidden layer neural network with 8 hidden nodes
▶ ReLU activation function
▶ Accuracy: 96%

Generate explanations:
▶ Represent neural network in the form of ASP encodings
▶ length of explanation varies between between 4 and 9 (avg len 5)
▶ Time varies between 2s and 17s (avg time 13s)
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BENCHMARKS
CONGRESSIONAL VOTING RECORDS FROM UCI MACHINE LEARNING REPOSITORY

An instance which is classified correctly as republican by our neural network

Features 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Length
Instance 0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1 16

ASP 1 0 0 1 4
OBDD 0 1 1 0 0 0 1 1 0 9
MILP 1 0 0 3

Voted YES on Physician-fee-freeze (feature num 4)
Voted NO on syn-fuels-corporation-cutback (feature num 11)

In case of ASP, if we set feature 4 and 14 to yes and 9 and 11 to no then the classification is
republication, does not matter what values other features take
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BENCHMARKS
THYROID RECURRENCE PREDICTION DATASET

Method Features

Decision tree structurally incomplete treatment response, low risk, age
Lime structurally incomplete treatment response, low risk, inter-

mediate risk
ASP structurally incomplete treatment response, intermediate

risk, euthyroid thyroid function categorization

Table. Explanations by different methods in thyroid recurrence prediction.

▶ Slight variation in identifying other important factors may come from the strengths and biases
of each method, highlighting the importance of employing multiple interpretation techniques
for a robust analysis.

▶ Predictive factors of recurrence in well-differentiated thyroid carcinoma, contributing to the
better understanding of the model.
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CONCLUSION

▶ Abductive explanations are model agnostic.
▶ A proof of concept to encode neural networks in the form of a logic program in ASP.
▶ Seamless conversion to logic program given inputs, weight matrices and bias vectors.
▶ Competitive performance on different benchmarks.
▶ Why specific/individual/local predictions are done!
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PERSPECTIVES

Methodology

▶ Other functions, more complex networks (more hidden layers, other architectures).
▶ Extend to non-binary classification tasks.
▶ How to change predictions? Generate adversarial examples.
▶ An alternative dedicated system to encode neural networks?

Reliability

▶ Robustness of explanations (negligible change -> negligible change in explanation).
▶ Multiple networks and identify the one with robust explanations.
▶ Consistency of explanations across similar examples?
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PERSPECTIVES

Scalability

▶ Quantized neural networks?
▶ Parallelization: Partitions of problem representations.

Applicability

▶ Tool development.
▶ General approach with large application domain.
▶ Thrombose prediction with proteomics and clinical dataset (David Tregouet, Inserm,

Bordeaux).
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