EXPLAINING ARTIFICIAL NEURAL NETWORKS USING ANSWER SET PROGRAMMING

Roland Kaminski, Torsten Schaub, Javier Romero, Misbah Razzaq

INRAe, CNRS, Univeristy of Tours, France University of Potsdam, Germany

September 9, 2024

MOTIVATION

Why?

- \blacktriangleright Understanding predictions.
- ▶ Model debugging and validation.
- ▶ Discovering new biological insights.

MOTIVATION

Two main approaches

- ▶ Non-formal verification methods.
	- *•* LIME, Deeplift, SHAP, etc.
- ▶ Formal verification methods.

Some limitations!

- ▶ Susceptible to adversarial attacks.
- ▶ Quality of explanations.
- ▶ Incorrectness or incompleteness of explanations.

Narodytska et al. 2019; Al-Shedivat, Dubey, and Xing 2018

BACKGROUND CLASSIFIER

A classifier is a tuple $(X, \mathcal{D}, C, \kappa)$:

- \blacktriangleright *X* is a set of distinct features x_1, \ldots, x_n taking values from D_1, \ldots, D_n for $n > 0$.
- \blacktriangleright **F** is the feature space $D_1 \times D_2 \times \cdots \times D_n$.
- \blacktriangleright *C* is a set of distinct classes c_1, \ldots, c_m for $m > 0$,
- \blacktriangleright *κ* is a classification function mapping $\mathbb F$ to *C*.

An *instance* is a pair (v, c) where $v \in \mathbb{F}$, $c \in C$, and $c = \kappa(v)$.

BACKGROUND ARTIFICIAL NEURAL NETWORK

▶ Each neuron perform this action:

$$
y = f\left(\sum_{i=0}^{n} w_i x_i + b\right) \tag{1}
$$

where x_0, x_1, \ldots, x_n are the inputs, w_0, w_1, \ldots, w_n are the weights associated with the respective inputs, *b* represents the bias, *y* is the output of the neuron, and *f* is an activation function.

BACKGROUND WHY?

Definition (Abductive explanations)

An abductive explanation is a subset E ⊆ X whose values are fixed according to v such that the prediction is c no matter the values of the remaining features:

$$
\forall x \in \mathbb{F} \ s.t. \ [\bigwedge_{x_i \in E} (x_i = v_i)] \implies (\kappa(x) = c) \tag{2}
$$

Note that we can equivalently write (2) as

$$
\neg \exists x \in \mathbb{F} \text{ s.t. } [\bigwedge_{x_i \in E} (x_i = v_i)] \land (\kappa(x) \neq c) \tag{3}
$$

Note that this is weak explanation but if it is also subset minimal then it is an abductive explanation.

.

Marques-Silva 2022

APPROACH THREE STEP PROCESS

- ▶ Build the neural network for a given problem.
- ▶ Represent the classifier in the form of a logic program.
- ▶ We use a deletion based algorithm to obtain explanations.
	- *•* Start with the initial set of features *X* which is an abductive explanation.
	- *•* Iteratively drop features from *X* while it is still an explanation.

```
Input : Classifier (X, \mathcal{D}, C, \kappa) and instance (v, c)Output: Subset minimal abductive explanation E
```

```
1 E \leftarrow X;
```
² for *xⁱ ∈ X* **do**

3 if $E \setminus \{x_i\}$ *is an abductive explanation* **then**

$$
4 \quad \Big| \quad \Big[E \leftarrow E \setminus \{x_i\};
$$

5 return *E*;

Algorithm 1: Algorithm to subset minimize an abductive explanation

APPROACH ANSWER SET PROGRAMMING

- ▶ Declarative problem solving approach.
- ▶ What is the problem? versus How to solve the problem?
- ▶ Intelligence lies within the solver.
- \blacktriangleright Easy to understand.

APPROACH GRAPH COLORING PROBLEM

Facts:

Rules and objective function:

Solution:

{assign(1*,* 1)*, assign*(2*,* 3)*, assign*(3*,* 3)*, assign*(4*,* 2)*, assign*(5*,* 1)*, assign*(6*,* 2)*}*

clingo[LP]

- ▶ Hybridized(ASP)
- ▶ Idea extend *clingo* with linear constraints over integers and reals (Janhunen et al. 2017).
- ▶ Features
	- *•* Linear constraints &sum.
	- *•* Objective function &minimize.

EXAMPLE 0/1 KNAPSACK

```
item (a; b; c; d).weight (a, "3.3"; b, "4.7"; c, "6.1"; d, "5.9".value (a, "3.1"; b, "3.2"; c, "1.9"; d, "4.8").
load ("9.1").
```


EXAMPLE 0/1 KNAPSACK

```
item (a; b; c; d).
weight (a, '3.3'; b, ''4.7'; c, ''6.1'; d, ''5.9').
value (a, "3.1"; b, "3.2"; c, "1.9"; d, "4.8").
load('9.1").
```

```
{ pack(I) } : – item (I).
\& sum \{ I \} = 1 : - pack(I).&sum \{ I \} = 0 :- item (I), not pack (I).
&sum { W*I: weight (I,W) } <= L: - load (L).
&maximize { P*I: value(I,P) }.
```


EXAMPLE 0/1 KNAPSACK

```
Model :
item (a) item (b) item (c) item (d)load ("9.1")
pack(a) pack(b)value (a, "3.1") value (b, "3.2")value (c, "1.9") value (d, "4.8")weight(a, "3.3") weight(b, "4.7")weight(c, "6.1") weight(d, "5.9")
```
Assignment : $a=1$ $b=1$ $c=0$ $d=0$ Optimization:

6 . 3

APPROACH ASP ENCODINGS

A simple artificial neural network with one layer, weight matrix $W_1 = \begin{pmatrix} 1 & 1 \end{pmatrix}$, bias vector $B_1 = \begin{pmatrix} 0 \end{pmatrix}$, and threshold $t = 1$.

Figure. An ANN to classify an OR gate.

The input variables $X = \{x_{0,1}, x_{0,2}\}$, domains $D_1 = D_2 = \{0, 1\}$, classes $\{\perp, \top\}$, and $\kappa(x_{0,1}, x_{0,2}) = \text{threshold}(\text{relu}(1 \cdot x_{0,1} + 1 \cdot x_{0,2} + 0), 1).$

APPROACH ASP ENCODINGS

```
dom(x_{0,1}, 0).
var(x_{0,1}).
                                                        dom(x_{0,1}, 1).
                            dom(x_{0,2},0).
                                                        dom(x_{0,2},1).
var(x_{0,2}).
                             \text{elem}(x_{1,1}, 1, x_{0,1}).
relu(x_{1,1}, 0).
                                                        elem(x_{1,1}, 1, x_{0,2}).
threshold(x_{1,1}, 1).
classify(\top).
                             input(x_{0,1}, 1).
```
APPROACH ASP ENCODINGS

```
{ \text{assign}(X, V): \text{dom}(X, V) } = 1 :- \text{var}(X), not input(X, \_).
\,1assign(X, V) :- input(X, V).
\, 2 \,&sum f X = V :- assign(X, V).
\mathbf{3}\bf{4}& sum {Y} > = 0 : - relu(Y, B).5 -& sum f neg(Y) > = 0 :- relu(Y, B).\, 6 \,&sum { W*X: elem(Y,W,X); -Y; neg(Y) } = -B :- relu(Y,B).
\tau\bf8{ aux(Y) } >= 0 :- relu(Y, B).
\,9&sum { neg(Y) } <= 0 :-
                                                 aux(Y).
10
    &sum {
                Y \} > 0 :-
                                                 aux(Y).
1\,1Y } <= 0 :- relu(Y,_), not aux(Y).
    &sum {
12\,1\sqrt{3}&sum { Y } >= V :- threshold(Y,V), classify(\bot).
1\,4&sum { Y } < V :- threshold(Y,V), classify(T).
15\,
```
BENCHMARKS UCI MACHINE LEARNING DATASETS

- ▶ Build artificial neural networks with ReLU activation function.
- ▶ Encoding in the form of a logic programs with Boolean and linear constraints.
- ▶ Calculate explanations.

Table. Time to compute/size of explanations for machine learning datasets generated using ASP.

BENCHMARKS COMPARISON WITH LOGIC BASED APPROACHES

Table. Explanation sizes for MILP and ASP-based approaches.

BENCHMARKS

CONGRESSIONAL VOTING RECORDS FROM UCI MACHINE LEARNING REPOSITORY

Data description:

- ▶ 16 key votes (Yes or No) of 1984 U.S. House of Representatives
- ▶ Classes represent the party of the congressman : Republican or Democrat
- ▶ 435 instances with missing data

Neural network:

- ▶ 1 hidden layer neural network with 8 hidden nodes
- ▶ ReLU activation function
- ▶ Accuracy: 96%

Generate explanations:

- ▶ Represent neural network in the form of ASP encodings
- ▶ length of explanation varies between between 4 and 9 (avg len 5)
- ▶ Time varies between 2s and 17s (avg time 13s)

BENCHMARKS CONGRESSIONAL VOTING RECORDS FROM UCI MACHINE LEARNING REPOSITORY

An instance which is classified correctly as republican by our neural network

Voted YES on Physician-fee-freeze (feature num 4) Voted NO on syn-fuels-corporation-cutback (feature num 11)

In case of ASP, if we set feature 4 and 14 to yes and 9 and 11 to no then the classification is republication, does not matter what values other features take

BENCHMARKS THYROID RECURRENCE PREDICTION DATASET

Table. Explanations by different methods in thyroid recurrence prediction.

- ▶ Slight variation in identifying other important factors may come from the strengths and biases of each method, highlighting the importance of employing multiple interpretation techniques for a robust analysis.
- ▶ Predictive factors of recurrence in well-differentiated thyroid carcinoma, contributing to the better understanding of the model.

CONCLUSION

- ▶ Abductive explanations are model agnostic.
- ▶ A proof of concept to encode neural networks in the form of a logic program in ASP.
- ▶ Seamless conversion to logic program given inputs, weight matrices and bias vectors.
- ▶ Competitive performance on different benchmarks.
- \blacktriangleright Why specific/individual/local predictions are done!

PERSPECTIVES

Methodology

- ▶ Other functions, more complex networks (more hidden layers, other architectures).
- ▶ Extend to non-binary classification tasks.
- ▶ How to change predictions? Generate adversarial examples.
- ▶ An alternative dedicated system to encode neural networks?

Reliability

- ▶ Robustness of explanations (negligible change -> negligible change in explanation).
- ▶ Multiple networks and identify the one with robust explanations.
- ▶ Consistency of explanations across similar examples?

PERSPECTIVES

Scalability

- ▶ Quantized neural networks?
- ▶ Parallelization: Partitions of problem representations.

Applicability

- ▶ Tool development.
- ▶ General approach with large application domain.
- ▶ Thrombose prediction with proteomics and clinical dataset (David Tregouet, Inserm, Bordeaux).