Uncertainty-Aware Concept Bottleneck Models with Enhanced Interpretability

Haifei Zhang, Patrick Barry, Eduardo Brandao

Jean Monnet University Hubert Curien Laboratory, France

> September 15, 2025 Porto, Portugal

Image classification using black-box models

We get the prediction, but we don't understand why!

- **©** Concept encoder: Image $x \to \text{CNN}$ backbone $\to \text{Concept}$ activation probabilities \hat{c} .
- **② Task predictor:** $\hat{c} \rightarrow \text{Interpretable classifier} \rightarrow \hat{y}$.

- Conventional approach for stage 2: Logistic regression.
 - √ Good balance between performance and interpretability.
 - X Coefficient values are abstract and unintuitive to understand.
 - X Difficult to capture uncertainty propagation from the concept prediction to the label prediction.
- Our Contribution: A novel interpretable classifier for stage 2 that can capture uncertainty.

- **① Concept encoder:** Image $x \to CNN$ backbone \to Concept activation probabilities \hat{c} .
- **② Task predictor:** $\hat{c} \rightarrow \text{Interpretable classifier} \rightarrow \hat{y}$.

- Conventional approach for stage 2: Logistic regression.
 - ✓ Good balance between performance and interpretability.
 - X Coefficient values are abstract and unintuitive to understand.
 - X Difficult to capture uncertainty propagation from the concept prediction to the label prediction.
- Our Contribution: A novel interpretable classifier for stage 2 that can capture uncertainty.

- **① Concept encoder:** Image $x \to \text{CNN}$ backbone \to Concept activation probabilities \hat{c} .
- **3 Task predictor:** $\hat{c} \rightarrow \text{Interpretable classifier} \rightarrow \hat{y}$.

- Conventional approach for stage 2: Logistic regression.
 - √ Good balance between performance and interpretability.
 - X Coefficient values are abstract and unintuitive to understand.
 - X Difficult to capture uncertainty propagation from the concept prediction to the label prediction.
- Our Contribution: A novel interpretable classifier for stage 2 that can capture uncertainty.

- **① Concept encoder:** Image $x \to \text{CNN}$ backbone \to Concept activation probabilities \hat{c} .
- **3 Task predictor:** $\hat{c} \rightarrow \text{Interpretable classifier} \rightarrow \hat{y}$.

- Conventional approach for stage 2: Logistic regression.
 - ✓ Good balance between performance and interpretability.
 - X Coefficient values are abstract and unintuitive to understand.
 - X Difficult to capture uncertainty propagation from the concept prediction to the label prediction.
- Our Contribution: A novel interpretable classifier for stage 2 that can capture uncertainty.

- **① Concept encoder:** Image $x \to \text{CNN}$ backbone \to Concept activation probabilities \hat{c} .
- **3** Task predictor: $\hat{c} \rightarrow$ Interpretable classifier $\rightarrow \hat{y}$.

- Conventional approach for stage 2: Logistic regression.
 - ✓ Good balance between performance and interpretability.
 - X Coefficient values are abstract and unintuitive to understand.
 - X Difficult to capture uncertainty propagation from the concept prediction to the label prediction.
- Our Contribution: A novel interpretable classifier for stage 2 that can capture uncertainty.

Architecture of proposed Class-Level Prototype Classifier (CLPC)

Training of stage 1 to Learn g(x): Fine-tune pre-trained CNN to predict concepts \hat{c} .

Architecture of proposed Class-Level Prototype Classifier (CLPC)

Training of stage 2 to learn $f(\hat{c})$:

- Assign each class a single binary-valued prototype in the concept space.
- \bullet Predict label by measuring the distance between **concept activations** \hat{c} and the **prototypes**.

What are prototypes in our setting?

Learnable binary-valued vectors representing ideal concepts for a class.

Car

Dog

	Plane	Car	Frog	Dog
Ears	0	0	0	1
Hairy	0	0	0	1
Wings	1	0	0	0
:	:	:	:	:
Wet	0	0	1	0
Wheels	1	1	0	0
Metallic	1	1	0	0

The loss function learns prototypes that are accurate, sparse, and determinate.

The loss function learns prototypes that are accurate, sparse, and determinate.

Total loss:

$$\mathcal{L} = \mathcal{L}_p + \lambda_s \mathcal{L}_s + \lambda_b \mathcal{L}_b$$

(Total Loss)

The loss function learns prototypes that are accurate, sparse, and determinate.

Total loss:

$$\mathcal{L} = \frac{\mathcal{L}_p}{\lambda_s \mathcal{L}_s} + \lambda_b \mathcal{L}_b \tag{Total Loss}$$

Loss components: for training set $\{\hat{c}^{(i)}, y^{(i)}\}_{i=1}^{N}$, class label set $\{1, \dots, L\}$ and concept set $\{1, \dots, K\}$

$$\mathcal{L}_{p} = \frac{1}{N} \sum_{i=1}^{N} \left(d(\hat{\boldsymbol{c}}^{(i)}, \ \boldsymbol{p}_{y^{(i)}}) - \frac{1}{L-1} \sum_{j \neq y^{(i)}} d(\hat{\boldsymbol{c}}^{(i)}, \ \boldsymbol{p}_{j}) \right)$$
 (Prototype Loss)

The loss function learns prototypes that are accurate, sparse, and determinate.

Total loss:

$$\mathcal{L} = \frac{\mathcal{L}_p}{\lambda_s \mathcal{L}_s} + \lambda_b \mathcal{L}_b \tag{Total Loss}$$

Loss components: for training set $\{\hat{c}^{(i)}, y^{(i)}\}_{i=1}^{N}$, class label set $\{1, \dots, L\}$ and concept set $\{1, \dots, K\}$

$$\mathcal{L}_{p} = \frac{1}{N} \sum_{i=1}^{N} \left(d(\hat{\mathbf{c}}^{(i)}, \ \boldsymbol{p}_{y^{(i)}}) - \frac{1}{L-1} \sum_{j \neq y^{(i)}} d(\hat{\mathbf{c}}^{(i)}, \ \boldsymbol{p}_{j}) \right)$$
 (Prototype Loss)

$$\mathcal{L}_s = \sum_{i=1}^L || \mathbf{p}_j ||_1$$
 (Sparsity Loss)

The loss function learns prototypes that are accurate, sparse, and determinate.

Total loss:

$$\mathcal{L} = \frac{\mathcal{L}_p}{\lambda_s \mathcal{L}_s} + \lambda_b \mathcal{L}_b \tag{Total Loss}$$

Loss components: for training set $\{\hat{c}^{(i)}, y^{(i)}\}_{i=1}^N$, class label set $\{1, \dots, L\}$ and concept set $\{1, \dots, K\}$

$$\mathcal{L}_{p} = \frac{1}{N} \sum_{i=1}^{N} \left(d(\hat{\boldsymbol{c}}^{(i)}, \ \boldsymbol{p}_{y^{(i)}}) - \frac{1}{L-1} \sum_{j \neq y^{(i)}} d(\hat{\boldsymbol{c}}^{(i)}, \ \boldsymbol{p}_{j}) \right)$$
 (Prototype Loss)

$$\mathcal{L}_s = \sum_{i=1}^L ||\boldsymbol{p}_i||_1$$
 (Sparsity Loss)

$$\mathcal{L}_b = \sum_{i=1}^L \sum_{k=1}^K (1 - p_{jk}) \cdot p_{jk}$$
 (Binary Loss)

Global explanation: what have we learned?

Clustering prototypes and concepts.

Global explanation: what have we learned?

Prototype tree

Local explanation: why do we get this prediction?

Example

Concept intervention: how can we get correct prediction?

Intervene 1-by-1 on the most "impactful" concepts to correct wrong label predictions.

- Conventional concept ordering strategy: Feature-importance-based.
 However, the error in concept prediction is not considered.
- Our proposed concept ordering strategy: Gain-based.
 Consider both the importance of concepts and the error in concept prediction.
 - For Logistic Regression:

LR-Gain_k =
$$w_{i^*k} \cdot (\mathbb{1}(w_{i^*k} > 0) - \hat{c}_k)$$
.

For CLPC:

$$\mathsf{CLPC} ext{-}\mathsf{Gain}_k = |p_{i^*k} - \hat{c}_k|.$$

Where j^* and k are indices for true class and concepts, respectively.

If $w_{j^*k} < 0$ or $p_{j^*k} = 0$, set \hat{c}_k to 0. In contrast, if $w_{j^*k} > 0$ or $p_{j^*k} = 1$, set \hat{c}_k to 1.

Experimental setup

Image Datasets

- CUB (Birds): 200 classes, 112 concepts
- Derm7pt (Skin Lesions): 5 classes, 19 concepts
- RIVAL10 (Objects): 10 classes, 18 concepts

Evaluations

- Baseline: Logistic regression
- Experiments:
 - 1. Classification accuracy
 - 2. Conformal prediction
 - 3. Robustness to concept noise
 - 4. Concept intervention efficiency

Classification accuracy

Table: Classification accuracy results

Dataset	Concept Acc (%)	Ave. $ oldsymbol{ ho}_i $	Accuracy (%)		Δ (%)
		,	LR	CLPC	
CUB	94.86	21.95/112	76.46	76.01	-0.45
Derm7pt	88.38	6.59/19	66.33	64.81	-1.52
RIVAL10	99.71	4.50/18	99.17	98.96	-0.21

Key takeaway

CLPC has competitive classification accuracy compared to logistic regression.

Conformal Prediction (CP)

What is CP?

A framework that yields reliable set-valued or empty predictions with guaranteed error rates.

Table: Conformal prediction performance (error rate = 5%)

Dataset –	Set Acc (%)		Set Size		Reject Ratio (%)	
	LR	CLPC	LR	CLPC	LR	CLPC
CUB	92.12	94.97	1	1	29.5	53.30
Derm7pt	87.34	94.43	2.15	3.38	0	0
RIVAL10	99.96	99.92	1	1	5.07	5.37

Key takeaway

CLPC is more sensitive and cautious in the face of uncertainty.

Robustness to concept noise

Inject noise by randomly flipping α % concepts:

- concept activation score $\leq 0.5 \rightarrow$ random value in (0.5, 1];
- \bullet concept activation score $>0.5 \rightarrow$ random value in [0, 0.5].

Key takeaway

CLPC is more robust to noise in concept prediction and thus more reliable for low-quality input images.

Concept intervention efficiency

Key takeaway

Gain-based strategies are more efficient than the feature-importance-based strategy.

Conclusion

Our proposed CLPC model has:

- Competitive performance as conventional interpretable models;
- Enhanced global and local interpretability;
- Natural capability to capture uncertainty propagation from concepts to labels;
- Strong robustness to noise in concept predictions.

Future work:

- Learn multiple prototypes per class.
- Investigate concept leakage present in the model.
- Conduct user-centred evaluations to validate model interpretability.

Our team

Haifei Zhang **⊕ ⊆** Associate Professor

Patrick Barry Master Student

Eduardo Brandao Associate Professor

Lab page: https://laboratoirehubertcurien.univ-st-etienne.fr/en/index.html

