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Image classification using black-box models

Black-Box
Model

ŷ

Input image

Output

We get the prediction, but we don’t understand why!
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Concept Bottleneck Models (CBMs)

Core idea: predict labels of images through human-understandable concepts as intermediate reasoning.
1 Concept encoder: Image x → CNN backbone → Concept activation probabilities ĉ .
2 Task predictor: ĉ → Interpretable classifier → ŷ .

Conventional approach for stage 2: Logistic regression.
✓ Good balance between performance and interpretability.
✗ Coefficient values are abstract and unintuitive to understand.
✗ Difficult to capture uncertainty propagation from the concept prediction to the label prediction.

Our Contribution: A novel interpretable classifier for stage 2 that can capture uncertainty.
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Conventional approach for stage 2: Logistic regression.
✓ Good balance between performance and interpretability.
✗ Coefficient values are abstract and unintuitive to understand.
✗ Difficult to capture uncertainty propagation from the concept prediction to the label prediction.

Our Contribution: A novel interpretable classifier for stage 2 that can capture uncertainty.

H. Zhang, P. Barry and E. Brandao (Hubert Curien Lab) AIMALAI @ ECML/PKDD 2025 2 / 15



Concept Bottleneck Models (CBMs)

Core idea: predict labels of images through human-understandable concepts as intermediate reasoning.
1 Concept encoder: Image x → CNN backbone → Concept activation probabilities ĉ .
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Architecture of proposed Class-Level Prototype Classifier (CLPC)

Training of stage 1 to Learn g(x): Fine-tune pre-trained CNN to predict concepts ĉ .
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Architecture of proposed Class-Level Prototype Classifier (CLPC)

Training of stage 2 to learn f (ĉ):
Assign each class a single binary-valued prototype in the concept space.

Predict label by measuring the distance between concept activations ĉ and the prototypes.
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What are prototypes in our setting?

Learnable binary-valued vectors representing ideal concepts for a class.

Plane Car

Frog Dog

Plane Car Frog Dog

Ears 0 0 0 1
Hairy 0 0 0 1
Wings 1 0 0 0
...

...
...

...
...

Wet 0 0 1 0
Wheels 1 1 0 0
Metallic 1 1 0 0
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Example of inference

For illustration objective, we consider only 4 concepts: Ears, Wet, Metallic, Wings
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Learning prototypes

The loss function learns prototypes that are accurate, sparse, and determinate.

Total loss:

L = Lp + λsLs + λbLb (Total Loss)

Loss components: for training set {ĉ (i), y (i)}Ni=1, class label set {1, . . . , L} and concept set {1, . . . ,K}

Lp =
1

N

N∑
i=1

d(ĉ (i), py (i))−
1

L− 1

∑
j ̸=y (i)

d(ĉ (i), pj)

 (Prototype Loss)

Ls =
L∑

j=1

||pj ||1 (Sparsity Loss)

Lb =
L∑

j=1

K∑
k=1

(1− pjk) · pjk (Binary Loss)
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d(ĉ (i), pj)

 (Prototype Loss)

Ls =
L∑

j=1

||pj ||1 (Sparsity Loss)

Lb =
L∑

j=1

K∑
k=1

(1− pjk) · pjk (Binary Loss)

H. Zhang, P. Barry and E. Brandao (Hubert Curien Lab) AIMALAI @ ECML/PKDD 2025 6 / 15



Global explanation: what have we learned?

Clustering prototypes and concepts.
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Global explanation: what have we learned?

Prototype tree

Method 1
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Local explanation: why do we get this prediction?

Example
c1 c2 c3 c4 c5 c6 c7 c8

Prototype 1 1 0 1 0 1 0 0
ĉ 0.7 0.9 0.1 1.0 0.0 0.8 0.5 0.2

Uncertainty 0.3 0.1 0.1 0.0 0.0 0.2 0.5 0.2
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Concept intervention: how can we get correct prediction?

Intervene 1-by-1 on the most “impactful” concepts to correct wrong label predictions.

Conventional concept ordering strategy: Feature-importance-based.
However, the error in concept prediction is not considered.

Our proposed concept ordering strategy: Gain-based.
Consider both the importance of concepts and the error in concept prediction.

For Logistic Regression:

LR-Gaink = wj∗k · (1(wj∗k > 0)− ĉk) .

For CLPC:
CLPC-Gaink = |pj∗k − ĉk |.

Where j∗ and k are indices for true class and concepts, respectively.

If wj∗k < 0 or pj∗k = 0, set ĉk to 0. In contrast, if wj∗k > 0 or pj∗k = 1, set ĉk to 1.
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Experimental setup

Image Datasets

CUB (Birds): 200 classes, 112 concepts

Derm7pt (Skin Lesions): 5 classes, 19 concepts

RIVAL10 (Objects): 10 classes, 18 concepts

Evaluations

Baseline: Logistic regression

Experiments:

1. Classification accuracy
2. Conformal prediction
3. Robustness to concept noise
4. Concept intervention efficiency
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Classification accuracy

Table: Classification accuracy results

Dataset Concept Acc (%) Ave.||pj || Accuracy (%) ∆ (%)
LR CLPC

CUB 94.86 21.95/112 76.46 76.01 -0.45
Derm7pt 88.38 6.59/19 66.33 64.81 -1.52
RIVAL10 99.71 4.50/18 99.17 98.96 -0.21

Key takeaway

CLPC has competitive classification accuracy compared to logistic regression.
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Conformal Prediction (CP)

What is CP?
A framework that yields reliable set-valued or empty predictions with guaranteed error rates.

Table: Conformal prediction performance (error rate = 5%)

Dataset
Set Acc (%) Set Size Reject Ratio (%)

LR CLPC LR CLPC LR CLPC

CUB 92.12 94.97 1 1 29.5 53.30

Derm7pt 87.34 94.43 2.15 3.38 0 0

RIVAL10 99.96 99.92 1 1 5.07 5.37

Key takeaway

CLPC is more sensitive and cautious in the face of uncertainty.
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Robustness to concept noise

Inject noise by randomly flipping α% concepts:

concept activation score ≤ 0.5 → random value in (0.5, 1];

concept activation score > 0.5 → random value in [0, 0.5].

(a) CUB (b) Derm7pt (c) RIVAL10

Key takeaway

CLPC is more robust to noise in concept prediction and thus more reliable for low-quality input images.
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Concept intervention efficiency

(a) CUB (b) Derm7pt (c) RIVAL10

Key takeaway

Gain-based strategies are more efficient than the feature-importance-based strategy.
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Conclusion

Our proposed CLPC model has:

Competitive performance as conventional interpretable models;

Enhanced global and local interpretability;

Natural capability to capture uncertainty propagation from concepts to labels;

Strong robustness to noise in concept predictions.

Future work:

Learn multiple prototypes per class.

Investigate concept leakage present in the model.

Conduct user-centred evaluations to validate model interpretability.
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