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Prime Implicant Explanations

Prime implicant (PI) explanations were first introduced by Shih et al. in 2018 to
obtain symbolic explanations of Bayesian network classifiers.

Definition (PI explanation Shih et al (2018) )
Let f (X) be a given decision function. A PI explanation of a decision f (x) is a
partial instance z such that
(a) z ⊆ x,
(b) f (x) = f (x′) for every x′ ⊇ z, and
(c) no other partial instance y ⊂ z satisfies (a) and (b).
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Prime Implicant Explanations for Graph Classification

Inspired by general PI explanations.

Explanations are minimally sufficient subgraphs
for a decision.

Definition (Subgraph PI explanation Azzolin et al (2025) )

Let h : G → {0, 1} be the binary classification function and G ∈ G the graph
instance. A PI explanation is a graph Z such that
(a) Z ⊆ G,
(b) h(Z′) = h(G) for all Z ⊆ Z′ ⊆ G ,
(c) and no proper subgraph Z′′ ⊂ Z satisfies (a) and (b).
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Goal of Prime Implicant Reaction Explanation

Human: Is this reaction feasible?
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Human: Is this reaction feasible?
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Goal of Prime Implicant Reaction Explanation

Human: Why is it feasible?

Classifier: Yes.

Human: Is this reaction feasible?
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Goal of Prime Implicant Reaction Explanation

Explanation Method: Because of this substructure.

Human: Why is it feasible?

Classifier: Yes.

Human: Is this reaction feasible?
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Imaginary Transition State (ITS) Graph Fujita (1986)
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Imaginary Transition State (ITS) Graph Fujita (1986)
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Imaginary Transition State (ITS) Graph Fujita (1986)

Compact 
Representation
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Domain Specific Constraints

The relevant ITS graph is
connected

and each ITS graph contains a necessary reaction center R ⊆ G.

Hence, the
explanations are

rooted

at the reaction center R. González Laffitte et al (2024)

Still exponential running time but solvable for small instances.



8/15AIMLAI at ECMLPKDD 2025 | Prime Implicant Explanations for Reaction Feasibility Prediction

Domain Specific Constraints

The relevant ITS graph is
connected

and each ITS graph contains a necessary reaction center R ⊆ G. Hence, the
explanations are

rooted

at the reaction center R. González Laffitte et al (2024)

Still exponential running time but solvable for small instances.



8/15AIMLAI at ECMLPKDD 2025 | Prime Implicant Explanations for Reaction Feasibility Prediction

Domain Specific Constraints

The relevant ITS graph is
connected

and each ITS graph contains a necessary reaction center R ⊆ G. Hence, the
explanations are

rooted

at the reaction center R. González Laffitte et al (2024)

Still exponential running time but solvable for small instances.



9/15AIMLAI at ECMLPKDD 2025 | Prime Implicant Explanations for Reaction Feasibility Prediction

Prime Implicant Reaction Explanation

Definition (PI reaction explanation)
Let h : G → {0, 1} be a reaction feasibility classifier, and G ∈ G be an instance
from the class of connected ITS graphs with R denoting its reaction center. A PI
reaction explanation is a graph Z such that
(a) R ⊆ Z ⊆ G,
(b) h(Z′) = h(G) for all Z ⊆ Z′ ⊆ G,
(c) Z is connected ,
(d) and no proper subgraph Z′′ ⊂ Z satisfies (a) to (c).
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Computing PI Reaction Explanations

Extension Construction Finding PI Explanations
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Computing PI Reaction Explanations

Extension Construction

Algorithm adapted from
Alokshiya et al. Alokshiya et al (2019)

based on reverse search Avis and Fukuda (1996)

Finding PI Explanations
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Computing PI Reaction Explanations

Extension Construction

Algorithm adapted from
Alokshiya et al. Alokshiya et al (2019)

based on reverse search Avis and Fukuda (1996)

Extensions represented as DAG
⇒ Nodes are subgraphs
⇒ Edges are subgraph relations

Partial order (lattice) induced by subgraph
relations.

Hasse diagram of possible extensions.

Finding PI Explanations

Operates on extension DAG.

Queries classifier with
selected extensions.

Annotates and prunes the
extension DAG until all PI
explanations are found.
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ReactionRoot = R

Instance = G
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Pruned

PI explanation

ReactionRoot = R

Neg. Classification
Pos. Classification Instance = G
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Experimental Evaluation

Do PI reaction explanations capture what a chemist would consider
the structural cause of the reaction?

Yes

Are PI reaction explanations readily interpretable by chemists?

No
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Experimental Results

Classifier: GIN, 5 layers of size 32, dropout 0.04, max pool, lr 0.003 Dataset: 6094 train / 1524 test Test Acc=86.1±2.1 AUROC=93.2±1.4 (10 runs)
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Summary, Limitations, and Further Directions

PI reaction explanations contain a chemist’s notion of cause,
but are generally not human interpretable.

Provide valuable insights into model decisions.

Computational intractability of the presented method.

Lack of benchmarks for reaction feasibility explanations.

Which capabilities of PI reaction explanations remain to be explored?
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Questions?
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Contact:

Klaus Weinbauer
klaus.weinbauer@tuwien.ac.at
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