Dichromatic number of surfaces

Pierre Aboulker ¹, Frédéric Havet ², Kolja Knauer ³
et Clément Rambaud ¹

1. DIENS, ENS, CNRS, PSL University, Paris, France.
2. COATI, I3S, CNRS, INRIA, Univ. Côte d’Azur, Sophia Antipolis, France.
3. Departament de Matemàtiques i Informàtica, Univ. de Barcelona, Spain

ANR DIGRAPh meeting, June 15–18, 2021
Surfaces

Classification Theorem for Surfaces: Every surface is homeomorphic to

- either the k-torus – a sphere with k-handles \mathbb{S}_k

or the k-cross surface – a sphere with k-cross-caps \mathbb{N}_k.

Euler characteristic: $c(\mathbb{S}_k) = 2 - 2k$ and $c(\mathbb{N}_k) = 2 - k$.
Graphs on surfaces

G embeddable on Σ:drawable on Σ without edge crossing.

Euler’s Formula:
G connected embedded on Σ. Then

$$n(G) - m(G) + f(G) \geq c(\Sigma)$$

Corollary: G embeddable Σ:

$$m(G) \leq 3n(G) - 3c(\Sigma) \quad \text{and} \quad \text{Ad}(G) \leq 6 - \frac{6c(\Sigma)}{n(G)}.$$

with equality if G is a triangulation.
Chromatic number of surfaces

\textbf{\textit{k}-colouring} of \(G \) : partition of \(V(G) \) into \(k \) \textbf{stable sets}.

\(G \) \textbf{\textit{k}-colourable} if it has a \(k \)-colouring.

\textbf{chromatic number} \(\chi(G) \) :
\(\chi(G) = \min\{k \mid G \text{ is } k\text{-colourable}\} \)

\textbf{chromatic number} \(\chi(\Sigma) = \max\{\chi(G) \mid G \text{ embeddable on } \Sigma\} \)

\(\text{Ad}(G) \leq 6 - \frac{6c(\Sigma)}{n(G)} < \max\{6; 6 - c(\Sigma)\} \).

So \(\chi(G) \leq \max\{6; 6 - c(\Sigma)\} \).

\(\chi(\Sigma) \leq \max\{6; 6 - c(\Sigma)\} \).
Chromatic number of surfaces

Heawood 1890: If $c(\Sigma) \leq 0$, then $\chi(\Sigma) \leq H(c) = \left\lfloor \frac{7 + \sqrt{49 - 24c}}{2} \right\rfloor$.

Ringel and Youngs 1968: If $\Sigma \neq \mathbb{N}_2$, then the complete graph of order $H(c(\Sigma))$ is embeddable on Σ.

Four Colour Theorem 1977: $\chi(S_0) = 4$.
Colouring triangle-free graphs on surfaces

Grötzsch 1959: Every triangle-free planar graph is 3-colourable.

Kronk and White 1972: Every triangle-free graph embeddable on the torus is 4-colourable.

Gimbel and Thomassen 1997: \(\exists c_1\) and \(c_2\) such that:

(i) Every triangle-free graph embeddable on \(S_k\) has chromatic number at most \(c_1 \frac{3\sqrt{k}}{\log k}\).

(ii) for each \(k\), there exists a triangle-free graph which is embeddable on \(S_k\) and with chromatic number at least \(c_2 \frac{3\sqrt{k}}{\log k}\).
Dichromatic number

k-dicollouring of $D = \text{partition of } V(D) \text{ into } k$

subsets inducing acyclic subdigraphs.

D is **k-dicolourable** if it has a k-dicolouring.

dichromatic number $\vec{\chi}(D)$: least k such that D is k-dicolourable.

$$\vec{\chi}(D) \leq \chi(D)$$

bidirected graph $\leftrightarrow G$: digraph obtained from G by replacing each edge by a **digon**.

$$\chi(G) = \vec{\chi}(\leftrightarrow G)$$
Dichromatic number of surfaces

oriented graph: graphs with no digon.

dichromatic number $\vec{\chi}(\Sigma)$

$$\vec{\chi}(\Sigma) = \max\{\vec{\chi}(\vec{G}) \mid \vec{G} \text{ oriented graph embeddable on } \Sigma\}$$

$$\vec{\chi}(\Sigma) \leq \chi(\Sigma)$$

Neumann Lara 1982: $\vec{\chi}(\mathbb{S}_0) \leq 3$.

Conjecture (Neumann Lara 1982): $\vec{\chi}(\mathbb{S}_0) = 2$.

Problem: Determine $\vec{\chi}(\Sigma)$ for every surface Σ.
Dichromatic number and arboricity

arboricity of G = partition of $V(G)$ into k

subsets inducing forests (acyclic subdigraphs).

$$\bar{\chi}(\vec{G}) \leq a(G) \leq \chi(G)$$

Kronk 1969: $\bar{\chi}(\Sigma) \leq a(\Sigma) \leq \left\lfloor \frac{9 + \sqrt{49 - 24c(\Sigma)}}{4} \right\rfloor$
Dichromatic number and cochromatic number

\textbf{\textit{k-cocolouring}} of \(G = \) partition of \(V(G) \) into \(k \) \textit{stable sets} or \textit{cliques}.

\(D \) is \textit{k-cocolorable} if it has a \(k \)-cocolouring.

\textbf{cochromatic number} \(\text{co}\chi(D) \) : least \(k \) s. t \(D \) is \(k \)-cocolorable.

\[
\bar{\chi}(D) \leq \text{co}\chi(F(D))
\]

\textbf{Gimbel and Thomassen 1997:}

\[
a_1 \frac{\sqrt{-c}}{\log(-c)} \leq \bar{\chi}(\Sigma) \leq \text{co}\chi(\Sigma) \leq a_2 \frac{\sqrt{-c}}{\log(-c)}
\]
Our results

<table>
<thead>
<tr>
<th>Σ</th>
<th>$c(Σ)$</th>
<th>Bounds for $\overrightarrow{χ}(Σ)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere $N_0 = S_0$</td>
<td>2</td>
<td>$2 \leq \overrightarrow{χ} \leq 3$</td>
</tr>
<tr>
<td>Projective plane N_1</td>
<td>1</td>
<td>$\overrightarrow{χ} = 3$</td>
</tr>
<tr>
<td>Klein bottle N_2</td>
<td>0</td>
<td>$\overrightarrow{χ} = 3$</td>
</tr>
<tr>
<td>Torus S_1</td>
<td>0</td>
<td>$\overrightarrow{χ} = 3$</td>
</tr>
<tr>
<td>Dyck’s surface N_3</td>
<td>−1</td>
<td>$\overrightarrow{χ} = 3$</td>
</tr>
<tr>
<td>S_2, N_4</td>
<td>−2</td>
<td>$3 \leq \overrightarrow{χ} \leq 4$</td>
</tr>
<tr>
<td>N_5</td>
<td>−3</td>
<td>$3 \leq \overrightarrow{χ} \leq 4$</td>
</tr>
<tr>
<td>S_3, N_6</td>
<td>−4</td>
<td>$3 \leq \overrightarrow{χ} \leq 4$</td>
</tr>
<tr>
<td>N_7</td>
<td>−5</td>
<td>$3 \leq \overrightarrow{χ} \leq 4$</td>
</tr>
<tr>
<td>S_4, N_8</td>
<td>−6</td>
<td>$3 \leq \overrightarrow{χ} \leq 4$</td>
</tr>
<tr>
<td>N_9</td>
<td>−7</td>
<td>$3 \leq \overrightarrow{χ} \leq 4$</td>
</tr>
<tr>
<td>S_5, N_{10}</td>
<td>−8</td>
<td>$\overrightarrow{χ} = 4$</td>
</tr>
</tbody>
</table>
Dichromatic number of tournaments

tournament: orientation of a complete graph.

\[
\max \vec{\chi}(n) = \max\{\vec{\chi}(\vec{G}) \mid \vec{G} \text{ oriented graph of order } n\} \\
= \max\{\vec{\chi}(T) \mid T \text{ tournament of order } n\}
\]

Erdős and Moser; Harutyunyan:

\[
\frac{n}{2 \log(n) + 1} \leq \max \vec{\chi}(n) \leq \frac{3n}{\log n}
\]

Conjecture: \(\vec{\chi}(\Sigma) = \max \vec{\chi}(H(c(\Sigma))) \) when \(-c(\Sigma)\) is large enough.
Dichromatic number of tournaments

- $\max \vec{\chi}(n) = 1$ for $n \leq 2$.
- $\max \vec{\chi}(n) = 2$ for $3 \leq n \leq 6$.
- $\max \vec{\chi}(n) = 3$ for $7 \leq n \leq 10$.
- $\max \vec{\chi}(n) = 4$ for $11 \leq n \leq 15$.

Aboulker, Havet, Knauer & Rambaud
Our results

- If $\Sigma \neq S_0$, then $\vec{\chi}(\Sigma) \geq 3$.
- $\vec{\chi}(N_3) \leq 3$.
- $\vec{\chi}(S_5) = \vec{\chi}(N_{10}) = 4$.
Dichromatic number of the projective plane

\[\chi(\mathbb{N}_1) \geq 3 \]
Dichromatic number of the projective plane

$$\bar{\chi}(\mathbb{N}_1) \geq 3$$
Dicritical digraphs

\(D \ k\text{-dicritical} : \begin{cases}
\vec{\chi}(D) = k \text{ and} \\
\vec{\chi}(H) < k \text{ for every proper subdigraph } H \text{ of } D.
\end{cases} \)

Property: \(\vec{G} \ k\text{-dicritical oriented graph embeddable in } \Sigma. \)

- \(d^+(v), d^-(v) \geq k - 1 \text{ for all } v \in V(\vec{G}). \)

- If \(k \geq 5 \), then \(n(\vec{G}) \leq \frac{-3c}{k - 4} \).

- If \(k = 4 \), then
 \[
 3m(\vec{G}) \geq 10n(\vec{G}) - 4. \quad \text{(Kostochka and Stiebitz, 2020)}
 \]
 So \(n(\vec{G}) \leq 4 - 9c \) if \(k = 4 \).
Dichromatic number of Dyck’s surface

\[\chi'(\mathbb{N}_3) \leq 3 \]

Assume \(\vec{G} \) 4-dicritical oriented graph embeddable on \(\mathbb{N}_3 \).

▷ \(G \) is not a triangulation of \(\mathbb{N}_3 \).

\[10n(\vec{G}) - 4 \leq 3m(\vec{G}) \leq 9n(\vec{G}) + 6. \] (Kostochka-Stiebitz + Euler’s Formula)
So \(n(\vec{G}) \leq 10 \), a contradiction.

▷ \(G \) is a triangulation of \(\mathbb{N}_3 \). Then \(n(\vec{G}) \leq 13 \).

Use of computer: Generation of all triangulations of \(\mathbb{N}_3 \) of order 11, 12 and 13. They all have arboricity 3, so their orientations are 3-dicolourable, contradiction.
\(\bar{\chi}(S_5) = \bar{\chi}(N_{10}) = 4 \)

\(\vec{G} \) 5-dicritical oriented graph in \(S_5 \) or \(N_{10} \).

\[T : \quad d^+ = d^- = 4 \]

\[H = \vec{G} - T \]
\(\chi(S_5) = \chi(N_{10}) = 4 \)

\(\vec{G} \) 5-dicritical oriented graph in \(S_5 \) or \(N_{10} \).

Harutyunyan and Mohar:
\(T \) directed cactus
\[\chi(T) \leq 2 \; ; \; m(T) \leq \frac{3}{2}(n(T) - 1) \]

\(T : d^+ = d^- = 4 \)

\(H = \vec{G} - T \)
\[\chi(\mathbb{S}_5) = \chi(\mathbb{N}_{10}) = 4 \]

\[\vec{G} \text{ 5-dicritical oriented graph in } \mathbb{S}_5 \text{ or } \mathbb{N}_{10}. \]

Harutyunyan and Mohar:

\[T \text{ directed cactus } \]

\[\chi(T) \leq 2 ; \ m(T) \leq \frac{3}{2}(n(T) - 1) \]

\[\chi(H) \geq 3 ; \ m(H) \geq 20 \]

\[T : d^+ = d^- = 4 \]

\[H = \vec{G} - T \]
\[\overrightarrow{\chi}(S_5) = \overrightarrow{\chi}(N_{10}) = 4 \]

\[\overrightarrow{G} \text{ 5-dicritical oriented graph in } S_5 \text{ or } N_{10}. \]

Harutyunyan and Mohar:

- \(T \) directed cactus
 \[\overrightarrow{\chi}(T) \leq 2 \; ; \; m(T) \leq \frac{3}{2}(n(T) - 1) \]
 \[\overrightarrow{\chi}(H) \geq 3 \; ; \; m(H) \geq 20 \]
- \(m(\overrightarrow{G}) = m(H) + 8n(T) - m(T) \)
- \(13n(T) \leq 2m(\overrightarrow{G}) - 43 \)
\[\chi(S_5) = \chi(N_{10}) = 4 \]

\(\vec{G} \) 5-dicritical oriented graph in \(S_5 \) or \(N_{10} \).

Harutyunyan and Mohar:

\(T \) directed cactus

\[\chi'(T) \leq 2 ; \ m(T) \leq \frac{3}{2} (n(T) - 1) \]

\[\chi'(H) \geq 3 ; \ m(H) \geq 20 \]

\[m(\vec{G}) = m(H) + 8n(T) - m(T) \]

\[13n(T) \leq 2m(\vec{G}) - 43 \]

By Euler’s formula:

\[3(n(\vec{G}) - 16) \leq n(T) \leq \frac{6n(\vec{G}) + 5}{13} \]

\[n(\vec{G}) \leq 19 \]
\(\chi(S_5) = \chi(N_{10}) = 4 \)

\(\tilde{G} \) 5-dicritical oriented graph in \(S_5 \) or \(N_{10} \). Assume \(n(\tilde{G}) = 19 \).

\[T : d^+ = d^- = 4 \]

\[H = \tilde{G} - T \]
\(\chi(S_5) = \chi(N_{10}) = 4 \)

\(\tilde{G} \) 5-dicritical oriented graph in \(S_5 \) or \(N_{10} \). Assume \(n(\tilde{G}) = 19 \).

\[T : d^+ = d^- = 4 \]

\[H = \tilde{G} - T \]

\[n(T) = 9, \text{ so } n(H) = 10 \]
$\bar{\chi}(S_5) = \bar{\chi}(N_{10}) = 4$

\vec{G} 5-dicritical oriented graph in S_5 or N_{10}. **Assume** $n(\vec{G}) = 19$.

$T : d^+ = d^- = 4$

$H = \vec{G} - T$

$n(T) = 9$, so $n(H) = 10$

$\bar{\chi}(H) \leq 3$
$\chi(S_5) = \chi(N_{10}) = 4$

\vec{G} 5-dicritical oriented graph in S_5 or N_{10}. Assume $n(\vec{G}) = 19$.

$T : d^+ = d^- = 4$

$n(T) = 9$, so $n(H) = 10$

$\chi(H) \leq 3$

Pick x s.t. $d_T^+(x) = d_T^-(x) = 1$.

$H = \vec{G} - T$
\(\chi(\mathbb{S}_5) = \chi(\mathbb{N}_{10}) = 4 \)

\(\vec{G} \) 5-dicritical oriented graph in \(\mathbb{S}_5 \) or \(\mathbb{N}_{10} \). Assume \(n(\vec{G}) = 19 \).

\[T : d^+ = d^- = 4 \]

\[H = \vec{G} - T \]

\(n(T) = 9 \), so \(n(H) = 10 \)

\(\chi(H) \leq 3 \)

Pick \(x \) s.t. \(d^+_T(x) = d^-_T(x) = 1 \).

Recolour two of its outneighbours in red.
\(\chi(S_5) = \chi(N_{10}) = 4 \)

\(\vec{G} \) 5-dicritical oriented graph in \(S_5 \) or \(N_{10} \). Assume \(n(\vec{G}) = 19 \).

\(n(T) = 9 \), so \(n(H) = 10 \)

\(\chi(H) \leq 3 \)

Pick \(x \) s.t. \(d_T^+(x) = d_T^-(x) = 1 \).
Recolour two of its outneighbours in red.

Extend the colouring to \(T \) s. t. a vertex of \(T \) has a colour distinct from its outneighbours.
Complexity of colouring graphs on surfaces

Dirac ’57, Thomassen ’97: For \(k \geq 5 \), there are only finitely many \((k + 1)\)-critical graphs embeddable on \(\Sigma \).

Corollary: For any \(k \geq 5 \), \(k \)-**COLOURABILITY** is **polynomial** for graphs embeddable on any fixed surface \(\Sigma \).

Fisk ’78: For \(k \in \{2, 3, 4\} \), there are infinitely many \((k + 1)\)-critical graphs embeddable on \(\Sigma \neq S_0 \).

Theorem: \(2 \)-**COLOURABILITY** is **polynomial**.

Stockmeyer ’73: **Planar 3-COLOURABILITY** is **NP-complete**.

THE QUESTION
Complexity of \(4 \)-**COLOURABILITY** for graphs on \(\Sigma \neq S_0 \) ?
Complexity of dicolouring digraphs on surfaces

Theorem: For $k \geq 6$, there are only finitely many $(k + 1)$-dicritical digraphs embeddable on Σ.

Corollary: For any $k \geq 6$, k-Dicolourability is polynomial for graphs on any fixed surface Σ.

Theorem: Planar 2-Dicolourability is NP-complete.

Theorem: Planar 3-Dicolourability is NP-complete.

Problem: Complexity of k-Dicolourability for digraphs on Σ for $k \in \{4, 5\}$?
Complexity of dicolouring oriented graphs on surfaces

Theorem: For $k \geq 3$, there are only finitely many $(k + 1)$-dicritical oriented graphs embeddable on Σ.

Corollary: For any $k \geq 3$, k-Dicolourability is polynomial for oriented graphs on Σ.

Problem: Complexity of 2-Dicolourability for oriented graphs on Σ?

Neuman Lara Conjecture implies that it is trivially polynomial for $\Sigma = S_0$. But if this conjecture fails, then it is NP-complete for $\Sigma = S_0$.