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Édouard Bonnet

ENS Lyon, LIP

meeting ANR DIGRAPHS



Trigraphs

a

b

c

d

e

f

g

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs
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Identification of two non-necessarily adjacent vertices
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Contractions in trigraphs
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edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.
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tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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overall maximum red degree = 0
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Twin-width of digraphs

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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Classes with bounded twin-width

I cographs = twin-width 0
I trees, bounded treewidth, clique-width/rank-width
I grids
I . . .



Trees

If possible, contract two leaves with the same parent



Trees

If not, contract a deepest leaf with its parent



Trees

If not, contract a deepest leaf with its parent



Trees

If possible, contract two leaves with the same parent



Trees

Cannot create a red degree-3 vertex
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Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Generalization to orientations of bounded treewidth graphs,
and to undirected bounded rank-width graphs



Grids

The following sequence works for any orientation
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Grids

The following sequence works for any orientation



Grids

4-sequence for orientations of planar grids



Orientations of bounded twin-width classes

Perhaps every “sparse” class of bounded twin-width has an
orientation closure of bounded twin-width?

Theorem
The class of all orientations of graphs from a Kt,t-free class of
bounded twin-width has itself bounded twin-width.

We will see later why
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Simple operations preserving twin-width
For graphs:
I complementation: remains the same
I taking induced subgraphs: may only decrease
I adding one apex: at most “doubles”
I substitution G(v ← H): max of the twin-width of G and H

For digraphs:
I any map {→,↔, · · · } → {→,←,↔, · · · }: may only decrease
I taking induced subdigraphs: may only decrease
I adding one apex: at most “quadruples”
I substitution G(v ← H): max of the twin-width of G and H



Substitution and lexicographic product

G = ~C5



Substitution and lexicographic product

G = ~C5, H = ~P4, substitution G [v ← H]



Substitution and lexicographic product

G = ~C5, H = ~P4, lexicographic product G [H]



Substitution and lexicographic product

More generally any modular decomposition



Substitution and lexicographic product

More generally any modular decomposition



Substitution and lexicographic product

tww(G [H]) = max(tww(G), tww(H))



Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size,
I unit interval graphs,
I Kt-minor free graphs,
I map graphs with embedding,
I d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I flat classes,
I subgraphs of every Kt,t-free class above,
I first-order transductions of all the above.



Twin-width in the language of matrices
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Encode a bipartite graph (or, if symmetric, any graph)



Twin-width in the language of matrices
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Contraction of two columns (similar with two rows)



Twin-width in the language of matrices

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
r
r
0
r
1

1
1
1
0
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

1
1
1
1
0
0
1

How is the twin-width (re)defined?
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How to tune it for non-bipartite graph?



Twin-width in the language of matrices
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Digraph encoding:
I i → j : 1 at (i , j), −1 at (j , i),
I i ↔ j : 2 at (i , j) and (j , i),
I otherwise: 0 at (i , j) and (j , i).



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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Maximum number of non-constant “zones” per column or row part
= error value
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Partition viewpoint

Matrix partition: partitions of the row set and of the column set
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. . . until there are a single row part and column part



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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Twin-width as maximum error value
of a contraction sequence



Grid minor

t-grid minor: t × t-division where every cell is non-empty
Non-empty cell: not full of 0 entries
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4-grid minor

A matrix is said t-grid free if it does not have a t-grid minor
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A matrix is said t-grid free if it does not have a t-grid minor



Mixed minor

Mixed cell: not horizontal nor vertical
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3-mixed minor

Every mixed cell is witnessed by a 2× 2 square
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Mixed value
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≈ (maximum) number of cells with a corner per row/column part
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But we add the number of boundaries containing a corner
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∴ merging row parts do not increase mixed value of column part



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If G admits a t-mixed free adjacency matrix, then tww(G) = 22O(t) .

Holds for binary structures in general

Step 1: find a division sequence (Di )i with mixed value f (t)
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Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
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Stuck, removing every other separation → f (t)
2 mixed cells per part



Stanley-Wilf conjecture / Marcus-Tardos theorem
Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Question
For every k, is there a ck such that every n×m 0, 1-matrix with at
least ck 1 per row and column admits a k-grid minor?

Conjecture (Stanley-Wilf conjecture ’80s)
Any proper permutation class contains only 2O(n) n-permutations.

Klazar showed Füredi-Hajnal ⇒ Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004
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Marcus-Tardos one-page inductive proof
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Let M be an n × n 0, 1-matrix without k-grid minor
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k2 division on top of M
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A cell is wide if it has at least k columns with a 1
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k2 remaining 1. Why?



Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11
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W

¬W ,¬T
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Choose ck = 2k4(k2

k
)

so that (k − 1)2ck
n
k2 + 2k3(k2

k
)
n 6 ckn



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)
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Stuck, removing every other separation → f (t)
2 mixed cells per part

Impossible!
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Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)
Step 2: find a contraction sequence with error value g(t)
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Refinement of Di where each part coincides on the non-mixed cells
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Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Theorem
The following are equivalent.
I (i) C has bounded twin-width.
I (ii) C has bounded “oriented twin-width.”
I (iii) C is t-mixed free.

Oriented twin-width: put red arcs from contracted vertices, and
consider the red out-degree.

(i) ⇒ (ii): immediate.
(ii) ⇒ (iii): same simple proof as (i) ⇒ (iii).
(iii) ⇒ (i): what we just saw.



Bounded twin-width – unit interval graphs

1

0

0

Warm-up with unit interval graphs: order by left endpoints



Bounded twin-width – unit interval graphs

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves



Bounded twin-width – posets of bounded antichain

T1 T2 T3 Tk
. . .

Put the k chains in order one after the other



Bounded twin-width – posets of bounded antichain

Tj Ti

C1

C2

C3

R1

R2

R3

C1 C2 C3

Tj

R1

R2

R3

Ti
-1

A 3k-mixed minor implies a 3-mixed minor between two chains



Bounded twin-width – posets of bounded antichain

Tj Ti

C1

C2

C3

R1

R2

R3

C1 C2 C3

Tj

R1

R2

R3

Ti
-1

-1

Transitivity implies that a zone is constant



Bounded twin-width – posets of bounded antichain

Tj Ti

C1

C2

C3

R1

R2

R3

C1 C2 C3

Tj

R1

R2

R3

Ti 1

1

And symmetrically



Sparse twin-width

Theorem (B., Geniet, Kim, Thomassé, Watrigant 21)
If C is a hereditary class of bounded twin-width, tfae.
I (i) C is Kt,t-free.
I (ii) C is d-grid free.
I (iii) Every n-vertex graph G ∈ C has at most gn edges.
I (iv) The subgraph closure of C has bounded twin-width.
I (v) C has bounded expansion.

d-grid freeness is preserved by turning some 1 into -1 or 2

Theorem
The class of all orientations of graphs from a Kt,t-free class of
bounded twin-width has itself bounded twin-width.



Sparse twin-width

Theorem (B., Geniet, Kim, Thomassé, Watrigant 21)
If C is a hereditary class of bounded twin-width, tfae.
I (i) C is Kt,t-free.
I (ii) C is d-grid free.
I (iii) Every n-vertex graph G ∈ C has at most gn edges.
I (iv) The subgraph closure of C has bounded twin-width.
I (v) C has bounded expansion.

d-grid freeness is preserved by turning some 1 into -1 or 2

Theorem
The class of all orientations of graphs from a Kt,t-free class of
bounded twin-width has itself bounded twin-width.



Sparse twin-width (2)
In the sparse setting d-mixed minor are replaced by d-grid minor

Theorem
If C is a hereditary Kt,t-free class, tfae.
I (i) C has bounded twin-width.
I (ii) C is d-grid free.



First-order model checking

FO Model Checking({E2}) Parameter: |ϕ|
Input: A digraph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔



First-order model checking

FO Model Checking({E2}) Parameter: |ϕ|
Input: A digraph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x∀y (E (x , y)⇒
∨

16i6k
x = xi ∨ y = xi )

G |= ϕ? ⇔ k-Vertex Cover



First-order model checking

FO Model Checking({E2}) Parameter: |ϕ|
Input: A digraph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ =
∨

16q6k, q is odd
∃x1 /∈ {s} E (s, x1) ∧ (∀x2 /∈ {s, x1} ¬E (x1, x2)∨

(∃x3 /∈ {s, x1, x2} E (x2, x3) ∧ (∀x4 · · · (∃xq /∈ {s, x1, . . . , xq−1}E (xq−1, xq)

∧ (∀xq+1 ¬E (xq, xq+1) ∨ xq+1 ∈ {s, x1, . . . , xq})) · · · )))

G |= ϕ? ⇔



First-order model checking

FO Model Checking({E2}) Parameter: |ϕ|
Input: A digraph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ =
∨

16q6k, q is odd
∃x1 /∈ {s} E (s, x1) ∧ (∀x2 /∈ {s, x1} ¬E (x1, x2)∨

(∃x3 /∈ {s, x1, x2} E (x2, x3) ∧ (∀x4 · · · (∃xq /∈ {s, x1, . . . , xq−1}E (xq−1, xq)

∧ (∀xq+1 ¬E (xq, xq+1) ∨ xq+1 ∈ {s, x1, . . . , xq})) · · · )))

G |= ϕ? ⇔ Short Generalized Geography



First-order model checking

FO Model Checking({E2}) Parameter: |ϕ|
Input: A digraph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Also expressible in FO: k-Independent Set, k-Clique,
k-Dominating Set, “transitive”, etc.



First-order model checking

FO Model Checking({E2}) Parameter: |ϕ|
Input: A digraph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Not expressible in FO: “k-colorable” for any k > 2, “cyclic”,
“Eulerian”, “Hamiltonian”, etc.



FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order
formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B., Kim, Thomassé, Watrigant ’20)
Transductions of bounded twin-width classes have bounded
twin-width.



FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order
formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B., Kim, Thomassé, Watrigant ’20)
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Transductions of bounded twin-width classes have bounded
twin-width.



FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order
formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B., Kim, Thomassé, Watrigant ’20)
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FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order
formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

Theorem (B., Kim, Thomassé, Watrigant ’20)
Transductions of bounded twin-width classes have bounded
twin-width.



Dependence and monadic dependence

A class C is
dependent, if the hereditary closure of every interpretation of C
misses some graph
monadically dependent, if every transduction of C misses some
graph [Baldwin, Shelah ’85]

Theorem (Downey, Fellows, Taylor ’96)
FO model checking is AW [∗]-complete on general graphs,
thus unlikely FPT on independent classes

Could it be that on every dependent class, it is FPT?
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Known FPT FO model checking –tractable classes

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

bounded
degree

sparse
classes

bounded twin-width

bounded
rank-width

cographs

posets of
bounded

width

L-interval

unit interval

pattern
avoiding
permuta-

tions

map
graphs

dense
classes

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence.



Equivalences for ordered graphs

Theorem (B., Giocanti, Ossona de Mendez, Toruńczyk,
Thomassé, Simon ’21+)
Let C be a hereditary class of ordered graphs, the following are
equivalent.
(i) C has bounded twin-width.

(ii) C is tractable.

(iii) C is dependent.

(iv) C is monadically dependent.

(v) C has subfactorial growth.

(vi) C has exponential growth.



Other settings where bounded twin-width ⇔
tractable ⇔ dependent?

Open question:
Let T be a hereditary class of tournaments.
T bounded twin-width ⇔ T tractable?

Large transitive subtournaments → totally ordered pieces
but no global order...
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Caccetta-Häggkvist conjecture

CH: Every n-vertex oriented graph without directed cycles of
length at most ` has minimum out-degree at most (n − 1)/`.

“` = 3” has received the most attention

The (assumed exhaustive list of) extremal configurations are built
with lexicographic products so have bounded twin-width



Caccetta-Häggkvist conjecture

CH: Every n-vertex oriented graph without directed cycles of
length at most ` has minimum out-degree at most (n − 1)/`.

“` = 3” has received the most attention

The (assumed exhaustive list of) extremal configurations are built
with lexicographic products so have bounded twin-width



Recap and open questions
We have seen that:
(1) Oriented twin-width is functionally equivalent to twin-width.
(2) Orientations of Kt,t-free bounded twin-width classes have

bounded twin-width.
(3) Maximum “delimiting power” of twin-width on ordered graphs.

Open questions
I Marcus-Tardos-free proof of (1).
I Bounded twin-width ⇔ tractable

among hereditary classes of tournaments.
I Revisiting conjectures like CH with a bounded/unbounded

twin-width win-win argument.


