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Trigraphs

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs

Identification of two non-necessarily adjacent vertices



Contractions in trigraphs

Identification of two non-necessarily adjacent vertices



Contractions in trigraphs

edges to N(u)AN(v) turn red, for N(u) N N(v) red is absorbing



Contraction sequence

A contraction sequence of G:
Sequence of trigraphs G = G, G,_1, ..., G, Gy such that
G; is obtained by performing one contraction in Gjy1.
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Sequence of trigraphs G = G, G,_1, ..., Go, G such that
G; is obtained by performing one contraction in Gjy1.
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A contraction sequence of G:
Sequence of trigraphs G = G, Gp_1, . . ., G, G such that
G; is obtained by performing one contraction in Gjy1.
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A contraction sequence of G:
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Contraction sequence

A contraction sequence of G:
Sequence of trigraphs G = G, G,_1, ..., G, G1 such that
G; is obtained by performing one contraction in Gjy1.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 0
overall maximum red degree = 0
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overall maximum red degree = 2
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Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.
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overall maximum red degree = 2



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.
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Maximum red degree = 1
overall maximum red degree = 2



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

abcdefg

Maximum red degree = 0
overall maximum red degree = 2



Twin-width of digraphs

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 0
overall maximum red degree = 0



Twin-width of digraphs

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

X
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Maximum red degree = 3
overall maximum red degree = 3
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Twin-width of digraphs

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

adg

Maximum red degree = 1
overall maximum red degree = 3



Twin-width of digraphs

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

abcdefg

Maximum red degree = 0
overall maximum red degree = 3



Classes with bounded twin-width

» cographs = twin-width 0

» trees, bounded treewidth, clique-width/rank-width
> grids

> ..



Trees

If possible, contract two leaves with the same parent



Trees

If not, contract a deepest leaf with its parent



Trees

If not, contract a deepest leaf with its parent



Trees

If possible, contract two leaves with the same parent



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Generalization to orientations of bounded treewidth graphs,
and to undirected bounded rank-width graphs



Grids

O—0O0—"C0O0—"—C0——0
O—0O—"C0O0—"—C0——0
O—O——C0O—C0——0
O—O——C0O—C0——0
O—O0—_0O—C0——0



Grids

O—O—0O—0—0
O—O—0O—0—0
O—O—0O—0—0
O—O—0—0—0

The following sequence works for any orientation



Grids

O—O0—0—0—0
O—O—O—0—0
O—O—O—0—0
—O—O—O—0
—O—O0—0



Grids

O—C0O—C0O—"0—0
O—0O—C0O——C0—0
O—O—0O——C0—0
O ) M I C U




Grids

O—C0O—C0O—"0—0
O—0O—C0O——C0—0
O—O—C0O——C0—0
O O ) ) e U




Grids

O—O0—0—0—0
O—O—O—0—0
O—O—O—0—0
O—O0—0—0Q

o/i\
/




Grids

O—O—C0O—=0
O—O—0O—=0
O—O—0O—C0
O—O—"C0O—0
O—O—"~CO——0

4-sequence for orientations of planar grids



Orientations of bounded twin-width classes

Perhaps every “sparse” class of bounded twin-width has an
orientation closure of bounded twin-width?



Orientations of bounded twin-width classes

Perhaps every “sparse” class of bounded twin-width has an
orientation closure of bounded twin-width?

Theorem
The class of all orientations of graphs from a K -free class of
bounded twin-width has itself bounded twin-width.

We will see later why



Simple operations preserving twin-width

For graphs:
» complementation: remains the same
» taking induced subgraphs: may only decrease
P adding one apex: at most “doubles”
» substitution G(v < H): max of the twin-width of G and H

For digraphs:
» any map {—, <>, -} = {—, ¢, <>, -+ }: may only decrease
» taking induced subdigraphs: may only decrease
» adding one apex: at most “quadruples”
» substitution G(v < H): max of the twin-width of G and H



Substitution and lexicographic product




Substitution and lexicographic product

G =Gs, H=P;, substitution G[v + H]



Substitution and lexicographic product

G=Gs, H= P, lexicographic product G[H]




Substitution and lexicographic product

More generally any modular decomposition




Substitution and lexicographic product
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More generally any modular decomposition




Substitution and lexicographic product

=)
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tww(G[H]) = max(tww(G), tww(H))




Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.

Bounded rank-width, and even, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size,

unit interval graphs,

Ki-minor free graphs,

map graphs with embedding,

d-dimensional grids,

Ki-free unit d-dimensional ball graphs,

Q(log n)-subdivisions of all the n-vertex graphs,

cubic expanders defined by iterative random 2-lifts from Ky,
flat classes,

subgraphs of every Ky -free class above,

VV VYV VYV VVVYVYVY

first-order transductions of all the above.



Twin-width in the language of matrices

(11 111110]
01100101
000000O0TO01
01001010
10011010
01111100
10111001,

Encode a bipartite graph (or, if symmetric, any graph)



Twin-width in the language of matrices

(1 1(1)1(1)1 1 0]
0 1/1/0/0|1 0 1
0 0/0/0[0|0 0 1
0 1/0/0[1|0 1 O
1 0(0[1/1/0 1 0
0 1/1|1|1]1 0 0
1 0(1)1{1jo 0 1

Contraction of two columns (similar with two rows)



Twin-width in the language of matrices

(1 1(1)1 11 0]
01/rjl0 101
00/0/0 001
01/r/0 010
10/rl1 010
0 1/1|1 100
1 0(1J1 00 1

How is the twin-width (re)defined?



Twin-width in the language of matrices

1 1(1)1 11 0]
01/rjl0 101
00/0/0 001
01/r/l0 010
10/rl1 010
0 1/1|/1 100
1 0(1J1 00 1

How to tune it for non-bipartite graph?



Twin-width in the language of matrices

1 1(1)1 11 0]
01/rjl0 101
00/0/0 001
01/r/l0 010
10/rl1 010
0 1/1|/1 100
1011 00 1

Digraph encoding:
> i—j: Lat(i,j), —1at(j,i),
» i< j: 2at(i,j)and (j,i),
» otherwise: 0 at (i,j) and (Jj, /).



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

C1la]a]alz]]z]o]
ofi]z]ofol1]o]1
ofofofofofofo]1
of1]ofolz]o[z]0
tfofolz]1fo]1]o
oft]1]1lz1ToTo

‘1foftf1]r]ofo]1]




Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1]1]1 1]1]1]1]o
of[1]t ofo]1]o]t
0JoJo ofo]o]o]t
JANNARNAR
1{ofo 1]1]o]1]0
o]z 1[1]1]o]o
“1fofr tfxTofolr]

Maximum number of non-constant “zones” per column or row part
= error value



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

(11 1|z]1]z]o]
of1]r ofofz]o]1
olojo ofolofo]1
of1]o ofz]ofz]0
1{ofo 1]1fofz1]o
ofz]1 1fz]1ToTo
‘1]ofr 1[1fo]o1]

Maximum number of non-constant “zones” per column or row part
... until there are a single row part and column part



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1)1]1 1]1]1]1]o
o[tz ofof1]o]z
ofoflo o|ofo]o]1
0[1]o of1foJ1]o
1[oJo 1]1]o1]o
o[1{r 1]1]1]o]o
‘1]o]t 11]ofo]1]

Twin-width as maximum error value
of a contraction sequence



Grid minor

t-grid minor: t x t-division where every cell is non-empty
Non-empty cell: not full of O entries

1 1)1 1)1 1]1 0
0 1[1 ofo 1fo 1
0 0o oJo ofo 1
0 1fo of1 o1 0
1 0/0 1|1 0|10
0 1t 1f1 1]o 0

1 0|1 1|1 ofo 1]

4-grid minor



Grid minor

t-grid minor: t x t-division where every cell is non-empty
Non-empty cell: not full of O entries

1 1)1 1)1 1]1 0
0 1[1 ofo 1fo 1
0 0o oJo ofo 1
0 1fo of1 o1 0
1 0/0 1|1 0|10
0 1t 1f1 1]o 0

1 0|1 1|1 ofo 1]

4-grid minor

A matrix is said t-grid free if it does not have a t-grid minor



Mixed minor

Mixed cell: not horizontal nor vertical

O |- OO O
— OO H]|+H O O
—\ —]|O O|O +H O
— OO A+ — -
— OO O —
N O O|O —
— =] H]|]O +H O
— OO O]+ O

3-mixed minor



Mixed minor

Mixed cell: not horizontal nor vertical

S o s E N [ R O
0 1|1 0 of1 0
0 0]0 0 0f0 O
0 1]o 0 1]0 1
1 0/0 1 1|0 1
0 1|1 1 1[1 O
1 0[1 1 1]0 0

3-mixed minor

= O OO0 ~H|+—

Every mixed cell is witnessed by a 2 x 2 square = corner



Mixed minor

Mixed cell: not horizontal nor vertical

= =]O O|0O —
= OO0 O~

= O RO O|O
O~ Ol Ol =

1
0
0
1
1
1
1

O O Rk Ol —

= O OO0 |-

1 0

1
1
0
0
0
1
1
-mixed minor

3

A matrix is said t-mixed free if it does not have a t-mixed minor



Mixed value

1 0f1 0 0|10 1
1 0f1 0 0J0J0 1

0 110 0 1]0]1 O

1 1{0 0 1J0|1 O

Re1 111 0 0|11 O

R3

2

R

~ (maximum) number of cells with a corner per row/column part



Mixed value

Ol —H|O O|O
—|O O|lH H]|O O
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|
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But we add the number of boundaries containing a corner



Mixed value

Ol 0O O|OC
—]|O O |0 O
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*. merging row parts do not increase mixed value of column part



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)

If G admits a t-mixed free adjacency matrix, then tww(G) = 22%0),

Holds for binary structures in general



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22°".



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 227

Step 1: find a division sequence (D;); with mixed value f(t)

1)1]1]1]1]1]1]o0
JAANNARNE
ofoJofoJoJo]o]t
o[t]ofo]1]o]1]0
1]oJof1]1]o[1]0
JAAARAND
‘t{ofr]r]tfofo]1]

Merge consecutive parts greedily



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 227

Step 1: find a division sequence (D;); with mixed value f(t)

1]1]1 1]1]1]1]o0
0[]z ofofz]o]z1
0f[oJo ofoJo]o]z
o[t]o of1]o]1]0
1]o]o 1[1]o[1]0
o[tz 11]1]o]o
‘1{ofr 1]tfofo]1]

Merge consecutive parts greedily



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 2™

Step 1: find a division sequence (D;); with mixed value f(t)

1]1]1 1]1]1]1]o0
oftfr ofofz]oft
ofofo ofofofof1
o[t]o of1]o]1]0
1]o]o 1[1]o[1]0
o[tz 11]1]o]o
‘1{ofr 1]tfofo]1]

Merge consecutive parts greedily



Twin-width and mixed freeness
Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 2270,

Step 1: find a division sequence (D;); with mixed value f(t)

1]1]1 1]1]1]1]o0
oftfr ofofz]oft
ofofo ofofofof1
o[t]o of1]o]1]o
1]o]o 1[1]o[1]0
o[tz 1[1]1]o]o
‘1{ofr 1]tfofo]1]

Stuck, removing every other separation — @ mixed cells per part



Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Question

For every k, is there a cx such that every n x m 0, 1-matrix with at
least ¢, 1 per row and column admits a k-grid minor?



Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Conjecture (reformulation of Fiiredi-Hajnal conjecture '92)

For every k, there is a ¢, such that every n x m 0, 1-matrix with at
least cx max(n, m) 1 entries admits a k-grid minor.



Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Conjecture (reformulation of Fiiredi-Hajnal conjecture '92)

For every k, there is a ¢, such that every n x m 0, 1-matrix with at
least cx max(n, m) 1 entries admits a k-grid minor.

Conjecture (Stanley-Wilf conjecture '80s)

Any proper permutation class contains only 20(n) n_permutations.

Klazar showed Fiiredi-Hajnal = Stanley-Wilf in 2000
Marcus and Tardos showed Fiiredi-Hajnal in 2004



Marcus-Tardos one-page inductive proof

Let M be an n x n 0, 1-matrix without k-grid minor



Marcus-Tardos one-page inductive proof

K2 x k2

Draw a regular 13 X ;% division on top of M



Marcus-Tardos one-page inductive proof

1 111

K2 x k2

A cell is wide if it has at least k columns with a 1



Marcus-Tardos one-page inductive proof

K2 x k2

A cell is tall if it has at least k rows with a 1



Marcus-Tardos one-page inductive proof

W

K2 x k2

There are less than k(lf) wide cells per column part. Why?



Marcus-Tardos one-page inductive proof

K2 x k2

2
There are less than k() tall cells per row part



Marcus-Tardos one-page inductive proof

_ . ,
W T
M =
T W T T
T
K2 x K2 W

In W and T, at most 2 - 5 - k(/f) kA = 2k3(lf)n entries 1



Marcus-Tardos one-page inductive proof

W, T

K2 x k2

There are at most (k — 1)*cx s remaining 1. Why?



Marcus-Tardos one-page inductive proof

W
W T
-W, =T
M = -
T W T T
T
K2 x k2 W

Choose ¢, = 2k* (lf) so that (k — 1)2ckk—"2 +2k3 (’f)n < ckn



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22

Step 1: find a division sequence (D;); with mixed value f(t)

1
1
0
1
0
1

RO ~H|+—

=R |O|O0 O

1
0
0
1
1
1

Stuck, removing every other separation

RO ]|O|1O0 O+

0

1

OIR|O|O0|O ]+

1
0
0
1
1
0
0
- Ny

=|Oo|Oo|o|— ~|O

-
,-\
=
v L

mixed cells per part



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22

Step 1: find a division sequence (D;); with mixed value f(t)

1
1
0
1
0
1

RO ~H|+—

=R |O|O0 O

1
0
0
1
1
1

RO ]|O|1O0 O+

0

Stuck, removing every other separation
Impossible!

1

1

1

OIR|O|O0|O ]+

1
0
0
1
1
0
0
- Ny

=|Oo|Oo|o|— ~|O

-
,-\
=
v L

mixed cells per part



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If do s.t. Adj,(G) is t-mixed free, then tww(G) = 5200

Step 1: find a division sequence (D;); with mixed value f(t)
Step 2: find a contraction sequence with error value g(t)

1]1]1 1]1]1]1]o
oft]r ofofz]oft
0JoJo oJojofof1
o]1Jo of1]o]1]0
1{ofo 1[1]o]1]0
o[tz 1[1]1]o]o
‘1{of1 1]1]ofo]1]

Refinement of D; where each part coincides on the non-mixed cells



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 30 s.t. Adj,(G) is t-mixed free, then tww(G) = 22



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If o s.t. Adj,(G) is t-mixed free, then tww(G) = 5200

Now to bound the twin-width of a class €
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with &



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 30 s.t. Adj,(G) is t-mixed free, then tww(G) = 22

Theorem
The following are equivalent.

» (i) € has bounded twin-width.
» (ii) € has bounded “oriented twin-width.”
» (iii) € is t-mixed free.

Oriented twin-width: put red arcs from contracted vertices, and
consider the red out-degree.

(i) = (ii): immediate.

(ii) = (iii): same simple proof as (i) = (iii).
(iii) = (i): what we just saw.



Bounded twin-width — unit interval graphs

Warm-up with unit interval graphs: order by left endpoints



Bounded twin-width — unit interval graphs

. A7
=
/ 0

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves



Bounded twin-width — posets of bounded antichain

Put the k chains in order one after the other



Bounded twin-width — posets of bounded antichain

Rs
G | | Rs Ti| R '
C2 |/| R2 Rl
G | |~ G G G

Tj

A 3k-mixed minor implies a 3-mixed minor between two chains



Bounded twin-width — posets of bounded antichain

R3 ;lg
G | A R3 Ti| Re -
G |% | Re R
ey | R G G G
T; T;
Tj

Transitivity implies that a zone is constant



Bounded twin-width — posets of bounded antichain

R3
G |< | Rs Ti| R !
G |%| Ry Ry 1
G | 1 R G G G
Tj T;
Tj

And symmetrically



Sparse twin-width

Theorem (B., Geniet, Kim, Thomassé, Watrigant 21)
If € is a hereditary class of bounded twin-width, tfae.
> (i) € is Ky r-free.
» (ii) € is d-grid free.
» (iii) Every n-vertex graph G € € has at most gn edges.
» (iv) The subgraph closure of € has bounded twin-width.
>

(v) € has bounded expansion.



Sparse twin-width

Theorem (B., Geniet, Kim, Thomassé, Watrigant 21)

If € is a hereditary class of bounded twin-width, tfae.
> (i) € is Ky r-free.
» (ii) € is d-grid free.
» (iii) Every n-vertex graph G € € has at most gn edges.
» (iv) The subgraph closure of € has bounded twin-width.
» (v) € has bounded expansion.

d-grid freeness is preserved by turning some 1 into -1 or 2

Theorem
The class of all orientations of graphs from a K; :-free class of
bounded twin-width has itself bounded twin-width.



Sparse twin-width (2)
In the sparse setting d-mixed minor are replaced by d-grid minor

Theorem
If € is a hereditary K¢ t-free class, tfae.
» (i) € has bounded twin-width.

» (ii) € is d-grid free.



First-order model checking

FO MoDEL CHECKING({Ez}) Parameter: |y
Input: A digraph G and a first-order sentence ¢ € FO({E})
Question: G = ¢?




First-order model checking

FO MoDEL CHECKING({Ez}) Parameter: |y
Input: A digraph G and a first-order sentence ¢ € FO({E})
Question: G = ¢?

Example:

¢ =Ixadx - IqVxVy (E(x,y) = \/ x=xVy=x)

1<i<k

G = ¢? < k-VERTEX COVER




First-order model checking

FO MoDEL CHECKING({E2}) Parameter: |¢|
Input: A digraph G and a first-order sentence ¢ € FO({E})
Question: G = ¢?

Example:

p= \/ I ¢ {s} E(s,x1) A (Vx2 & {s,x1} ~E(x1,x2)V

1<qg<k, q is odd

(3x3 € {s,x1,x0} E(x2,x3) A (Vxa---(Ixq & {5, x1,...,Xq—1} E(Xg—1,Xq)
A (Vxg+1 ~E(xq; Xg+1) V Xq+1 € {S, X1, -+, %q})) )
GEp? &



First-order model checking

FO MoDEL CHECKING({E2}) Parameter: |¢|
Input: A digraph G and a first-order sentence ¢ € FO({E})
Question: G = ¢?

Example:

p= \/ I ¢ {s} E(s,x1) A (Vx2 & {s,x1} ~E(x1,x2)V

1<qg<k, q is odd

(3x3 € {s,x1,x0} E(x2,x3) A (Vxa---(Ixq & {5, x1,...,Xq—1} E(Xg—1,Xq)
A (Vxg+1 7E(Xgs Xg+1) V Xg+1 € {S,x1,....xq})) *)))

G = ¢? & SHORT GENERALIZED GEOGRAPHY



First-order model checking

FO MoDEL CHECKING({Ez}) Parameter: |¢|
Input: A digraph G and a first-order sentence ¢ € FO({E})
Question: G | ¢?

Also expressible in FO: k-INDEPENDENT SET, k-CLIQUE,
k-DOMINATING SET, “transitive”, etc.



First-order model checking

FO MoDEL CHECKING({Ez}) Parameter: |¢|
Input: A digraph G and a first-order sentence ¢ € FO({E})
Question: G | ¢?

Not expressible in FO: “k-colorable” for any k > 2, “cyclic”,
“Eulerian”, “Hamiltonian", etc.




FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order
formula

o(x,y) =—E(x,y) (complement)
o(x,y) = E(x,y) vV 3IzE(x,z) AN E(z,y) (square)



FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order

formula
o(x,y) = —~E(x,y) (complement)
o(x,y) = E(x,y) vV 3IzE(x,z) AN E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete
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FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order

formula
o(x,y) = —~E(x,y) (complement)
o(x,y) = E(x,y) vV 3IzE(x,z) AN E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete
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FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order

formula
o(x,y) = —~E(x,y) (complement)
o(x,y) = E(x,y) vV 3IzE(x,z) AN E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

cee

o0

e(x,y) = E(x,y) V (G(x) A B(y) A —3zR(z) N E(y, 2))
V(R(x) A B(y) A 3zR(z )/\E(y, z) N—3zB(z) N E(y, z))



FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order

formula
o(x,y) = —~E(x,y) (complement)
o(x,y) = E(x,y) vV 3IzE(x,z) AN E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

p(x,y) = E(x,y) V (G(x) A By) N =3zR(z) A E(y, 2))
V(R(x) AN B(y) AN3zR(z) N E(y,z) AN —3zB(z) A E(y, z))



FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order

formula
o(x,y) = —~E(x,y) (complement)
o(x,y) = E(x,y) vV 3IzE(x,z) AN E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete



FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order
formula

o(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3IzE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

Theorem (B., Kim, Thomassé, Watrigant '20)

Transductions of bounded twin-width classes have bounded
twin-width.



Dependence and monadic dependence

A class € is
dependent, if the hereditary closure of every interpretation of &
misses some graph

monadically dependent, if every transduction of € misses some
graph [Baldwin, Shelah '85]



Dependence and monadic dependence

A class € is
dependent, if the hereditary closure of every interpretation of &
misses some graph

monadically dependent, if every transduction of € misses some
graph [Baldwin, Shelah '85]

Theorem (Downey, Fellows, Taylor '96)
FO model checking is AW [«]-complete on general graphs,

thus unlikely FPT on independent classes

Could it be that on every dependent class, it is FPT?



Known FPT FO model checking —tractable classes

(bounded twin-width) )

posets of
bounded
width

L-interval
unit interval

bounded
rank-width

dense
classes
N\

pattern
avoiding

permuta-
tions

( 1

nowhere dense

[bou nded expansion

l

' [polynomial expansion] bounded
[ degree

\{proper minor—closed}

sparse

classes
J

Theorem (B., Kim, Thomassé, Watrigant '20)
FO MoDEL CHECKING solvable in f(||, d)n on graphs with a d-sequence.



Equivalences for ordered graphs

Theorem (B., Giocanti, Ossona de Mendez, Torunczyk,
Thomassé, Simon '21+)

Let € be a hereditary class of ordered graphs, the following are
equivalent.

(i) € has bounded twin-width.
(ii
(iii

) € is tractable.
)

(iv) € is monadically dependent.
)
)

€ is dependent.

(v) € has subfactorial growth.

(vi) € has exponential growth.



Other settings where bounded twin-width <
tractable < dependent?

Open question:
Let I be a hereditary class of tournaments.
T bounded twin-width < I tractable?



Other settings where bounded twin-width <
tractable < dependent?

Open question:
Let I be a hereditary class of tournaments.
T bounded twin-width < I tractable?

Large transitive subtournaments — totally ordered pieces
but no global order...



Caccetta-Haggkvist conjecture

CH: Every n-vertex oriented graph without directed cycles of
length at most ¢ has minimum out-degree at most (n—1)//.

"¢ = 3" has received the most attention



Caccetta-Haggkvist conjecture

CH: Every n-vertex oriented graph without directed cycles of
length at most ¢ has minimum out-degree at most (n—1)//.

"¢ = 3" has received the most attention

The (assumed exhaustive list of) extremal configurations are built
with lexicographic products so have bounded twin-width



Recap and open questions

We have seen that:

(1) Oriented twin-width is functionally equivalent to twin-width.

(2) Orientations of Ky ;-free bounded twin-width classes have
bounded twin-width.

(3) Maximum “delimiting power” of twin-width on ordered graphs.

Open questions
» Marcus-Tardos-free proof of (1).

» Bounded twin-width < tractable
among hereditary classes of tournaments.

» Reuvisiting conjectures like CH with a bounded/unbounded
twin-width win-win argument.



