Open pooblems on digraphs
Jurgen Bans-Jensen
U.of Soothurn Denmork

Sete May 30,2023

Supereulerian digraphs
A digraph $D=(V, A)$ is sopereulerian if it contains a spanning connected sobdigraph $D^{\prime}=\left(V, A^{\prime}\right), A^{\prime} \subseteq A$ s.t $\quad d_{D^{\prime}}^{+}(v)=d_{D^{\prime}}^{-}(v) \quad \forall v \in V$

In particular every hamiltonian digraph is sopereculerion Theorm (B-), Bessy)
It is NP-computh to decide whether a digraph is sopereuterion
Problem
For which classese of well. studicd digraphs can wa decide For which classerse of woll-stutcicd
a digragh D fome is soperemeinion? Tnu for $e=\begin{gathered}\text { semicomplute multiparhte, in-senvicomptho } \\ \text { quasi-transitive }\end{gathered}$ quasi-transitive
An Eulerian factor of a digraph $D=(U, A)$ is a subdigraph $D^{\prime}=\left(V, A^{\prime}\right)$ s.t each strongly connectiol component D_{i}^{\prime} of D is superentionon

Proposition (BJ, Maddaloni)
One can check whether D has an eulerian facto and if so, produce an euleins factor in pol. time

Note similanity with cyde factors: an eubrian factor is a spannins collection of arc-disjoint cycles

Sobeing superereterian is a relaxation of beins eeberian and of beins hamiltonian A digraph $D=(V, A)$ is semicompletz multipartite if its underlying undirectal graph is complet multipartite.

Theorem (B-J, Maddaloni)
A semicomplete aueltiparth digraph D is supereulerian if and only if it is strous and has an eulerian factor

Theorem (Chuatal Erdös)
if $k(G) \geq \alpha(G)$ then G is hamultonian

Proposition Suppon $\operatorname{IVG} \mid[\geq 3$, then
$\lambda(G) \geq \alpha(G)$ implies that G is supereulerian
Conjectun (B-), Thomaseé)
$\lambda(D) \geq \alpha(D) \Rightarrow D$ is sopereculerian

- Truefor symmetric digraphs
- True for semicomplete uneltipartitedigraphs
- True for quasi-transitive digraphes

- open evenfor $\alpha=2$ whethar $\exists K$ s.t $\lambda(D) \geq K$ and $\alpha(D)=2$
\Rightarrow Supereulerion

Theorem (Fraise, Thomason)
Every k-strons toornament T has a hamiltonian cych avoiding any prescribed sut of $k-1$ arcs of T

Conjecture (B-J, Havet, Yeo)
\forall semicomplete $D=(V, A)$ with $\lambda(D) \geq k t l$ and $\forall A^{\prime} \leq A \quad\left|A^{\prime}\right|=k$:
D-Al has a spannins eulerian subdiraph.

$$
\text { True if } \left.\lambda(D) \geq\left\lceil\frac{6 k+1}{5}\right\rceil(B-) \text {, Dépres, Yeo }\right)
$$

Increasing vertex-connectivity by are reversal/addition
$a_{k}(D)=$ min $\#$ new arcs to add to $D=(V, A)$ s.t $D^{\prime}=(V, A \cup F)$ is k-strons
$a_{k}(D)<\infty$ if $|V(D)| \geq k t \mid$
$a_{k}(D)$ can be found in polynomial time (Frank, Jordan)
$r_{k}(D)=$ min\#arcs to revers in Ds.t. result is k-strong

Clearly $a_{k}(D) \leq r_{k}(D) \quad \forall D$
can find $r_{1}(D)$ in polynomial time via submodular flows
$r_{k}(D) N P$-hard for $k \geq 2$
Durand de Gevisny fork ≥ 3
B-), Hoersch, kviesell for $k=2$

Conjecture ($B-5,1994$)
Every tournament T on $n \geq 2 k t$ vertices satisfies that $r_{k}(T) \leq\binom{ k+1}{2}$
Easy to show that $r_{k}(T) \leq\binom{ 4 k-2}{2}$
Theorem (B-J, Johanna, Yeo)
For every semicomplete digraph D on $n \geq k t$ (vertiu)

$$
\left.a_{k}(1)\right) \leq\binom{ k+1}{2}
$$

Theorem (B-J, Jordan)
For wens semicomplet digraph D on $n \geq 3 k-1$ vertices we have $a_{k}(D)=\Gamma_{k}(D)$
\Rightarrow conjecture above holds if $|V(T)| \geq 3 k-1$ and $r_{k}(T) \leq\binom{ 3 k-2}{2} \quad$ a (way)

Deonienting arc) to increase (arc-) connechucty
By deorienting an are $u-x$ in D we mean addings the arc $v \rightarrow u$
$\operatorname{deor}_{k}(D)=\min _{\#}$ ofarcs to deorient in D s.t. result is k-strons

NP-hard to calculate deor (1)) whan $k \geq 3$ ($B-5$, Hoersch, kriexll)

Complexity of findius deor 2 (D) is open deor $\operatorname{arc-atans}_{k}(D)=$ min \#arcs to deorient in D s.t result is k-arc-stions
deor, arc-stwns (D) polynomial via submodular flows deork $_{k}^{\operatorname{arc}(-\operatorname{tran}}(1 D)$ open ficall $k \geq 2$

Spanning oriental subgraphj of digraphs
Conjecture (Jackson \& Thomasen)
Every $2 k$-strong $D=(V, A)$ contains a k-strong spanning subdigraph $D^{\prime}=\left(V, A^{\prime}\right) A^{\prime} \leq A$ (may think of D^{\prime} as obtainul by deleting one are of each 2 -cych in D)

- Open even for semicompleti digraphs
- (3k-2)-strong suffices for semicompleh D (Guo)

Conjecture ($B-1$, Jordan $)$
$\forall k \geq 1 \forall(2 k-1)$-strong semicompleh D on $u \geq 2 k t 1$ vertices contains a spanning k-otrons tournament

- would be best possible

- True for $k=2$ and 6 suffice for $k=3$

Majority Colones
A vertex coloring C of D is a majority colones of D
if $|\{\omega \mid v \rightarrow \omega \wedge c(\mathbb{L}) \neq(\omega)\}| \geq \mid\langle\omega| v \rightarrow \omega \cap c(\mathbb{L}|=c(\omega) B|$ holds for all $v \in V(D)$
Theorem (kreutzer etal)
Every digraph has a majonty colones with 4 colors
Follows from:
Every acyclic digraph has a majonty col with 2 colors Conjecture (Kreutzer etal)
Every D has a majouty colons worth 3 colors

- 2 is not enough

- NPC to decide if D has a majority col with 2 colour) (B-I, Bess, Haver, Yo)
- Open for tournaments
- True if $\delta^{t}(D) \geq 72 \log 3 n \quad n=|V(D)|$ (Kruiterelal)
- True if $\delta^{t}(D) \geq 1200$ and exponentially bounded in-degreas

2 -partitions of toornaments
Theorem (kühnetal)
$\exists f(h)$ s.t every $f(h)$-strong tournament $T=(V, A)$ has a 2-partition $V=V_{1}, V_{2}$ s.t
$T\left\langle V_{1}\right\rangle, T\left\langle V_{2}\right\rangle$ and $T\left\langle V_{1,} V_{2}\right\rangle$ are all k-strous
Question what is the complex, ty of decialing for a suen semicomplete $D=(V, A)$, whether $i t$ has a 2-partition $V=V_{1} \cup V_{2}$ such that
$D\left\langle V_{1}\right\rangle, D\left\langle V_{2}\right\rangle$ and $D\left\langle V_{1}, V_{2}\right\rangle$ areall strons?
polynomial to check for 2 -partition $V=V_{1} \cup V_{2}$ s,t each of $D\left\langle V_{1}\right\rangle, D\left\langle V_{2}\right\rangle$ ars strons (B-), Niclmn)

NPC if we want $D\left\langle V_{1}\right\rangle$ and $D\left\langle V_{2}\right\rangle$ to de strons tournammets (B-), chistionm)

Arc-disjoint spanning subdigraphs
out-branchins/in-branchins

root r

Conjecture (Thomassen)
$\exists k$ sit $\lambda(D) \geq k \Rightarrow D$ has an oot-bramching which is are -disjoint from some in -branching

- True with $K=2$ for semicomplete digraphs $(B-J, Y e o)$
- True with $k=3$ for D with $\alpha(D)=2(B-1$, Bess, , avert, y(0)
- True with $k=3$ for D of the form ($B-5$, Goth, Yo)
- open whether already $k=3$ suffices for any digraph.

Conjecture ($B-J, Y e o$)
ㅋ K sit every K-arC-strons $D=(V, A)$ ha) an arc-partition $A=A_{1} \cup A_{2}$ s.t $D_{i}=\left(V, A_{i}\right)$ is strong for $i=1,2$

- True with $k=3$ semicomplete $D(B-S, Y<0)$ on exception for $k=2$
- True with $k=3$ for digraphs of the form

(B-S, wang)

The underlying graphs of such digraphs are exactly the class of split graphs.

- True with $k=3$ for locally sumicompluh digraphs (

Conjectun (Kelly)
Every k-regular tournament decompons into k arc-dijoint hamiltonian $u_{y}(h)$

- Tme for vers largek (kühn etal)
- would follow forall k from the following (E vers k-resolar T has $\lambda(T) \geq k$)

Conjectun ($B-y_{1}$ yeo)
Every k-arc-otwons toornament $T=(V, A)$ hars an arc-decompusition $A=A_{1} \cup A_{2} \cup \ldots A_{k}$ s.t $D=\left(V, A_{i}\right)$ is stron, for $0=1,2 \cdots k$

This is tru if $S^{+}(T), S^{-}(T) \geq 37 k$ (B-J, Yeo)

Weakenings of the conjectun:
Conjectur ($B-1, y, 0$)
$\forall k \geq 2$ and $s_{11} s_{2}$ s.t $k=s_{1} t s_{2}$ every foornament $T=(V, A)$ with $\lambda(T)=k$ has arc-decomp

$$
A=A, \Delta A_{2} \quad s, t . \quad \lambda\left(D_{i}\right) \geq s_{i} \text { for } i=1,2
$$

when $D_{i}=\left(V, A_{i}\right)$
Conjectun ($B-y, Y_{c o}$)
$\forall k \geq 1$ every k-arc - stong toornament $T=(V, A)$ has a strons spannins subdigraph $H=\left(V, A^{*}\right)$

$$
\text { s.t } \lambda\left(T-A^{*}\right) \geq k-1
$$

Thomassen poved that every 2-arc-strong tornamest has a hamiltonian path P s.t $T-A(P)$ is stons
This does not hold if we replace path by cescle:

Problem (B-J, Y 100)
Is then a polynomial alsonthm for decidus whather a strons fournament T ha) a hamiltonion cych C s.t. T-A(c) is stions?

Conjectur (Thamasom)
Even 3-stwns tournament has a pair of arc-dijjoint hamitonian cychs.
would follow from
conjector ($B-J, Y$ y 0)
If a tournamunt has no pair of arc-dijjoint hamiltonian ucho, then then are $2 a r c s a^{\prime} a^{\prime} \in A(T)$ s.t $\left.T-h a, a^{\prime}\right)$ has no hamiltonian cych

By the Frain-Thomasm thcorem, every 3 -strons toornamunt contains a hamiltoniay cych avoilins any two prescribed arcs
so Themasens conjector follows if the above conjecton holds.

Mixed linkings in digraphs
Question (Thomas) what is the complexity of deciding whether the underlying graph G(D) of a digraph D has edge-disj. Spanning trees T_{1}, T_{2} sit T_{1} is oriental as an out-branduns in D ?
Answer: the prodem is NP-complin ($B-1, Y_{1}$)
Theorem (B-), kricsell) The following is NPC Given a digraph $D=(V, A)$ and district $s_{1}, s_{2}, t_{1}, t_{2} \in V$ Doc, $G(D)$ contain disjoint paths P_{1}, P_{2} s.t. P_{i} is an $\left(s_{i}, t_{i}\right)$-path $i=1,2$ and in D the path P_{1} is a directicl (s_{1}, ϵ_{1}) - path)?
Conjecture ($B-J$, kriesell)
$\exists K$ sit $\forall D$ which is K-strong and $s_{1}, s_{2}, t_{1}, t_{2} \in V(D)$: $G(D)$ contains $P_{1} P_{2}$ a) above
$K \geq G$ west hold as the are planar S-connectil non 2-lintad graphs

Certificates for $k($ (arc)-strons connectivity
Every digraph $D=(V, A)$ on nuertius with $\lambda(D)=k$ has a panning k-arc-stions soddisraph $D^{\prime}=\left(V, A^{\prime}\right)$ s.t. $\lambda\left(D^{\prime}\right)=k$ and $n k \leq\left|A^{\prime}\right| \leq 2 k(n-1)$. D^{\prime} is called a certificate for D being k-arc-strons
(*) follows from Edmond s branching theorem a) D has k arc-disjoint out-brunchins, $B_{s, 1, \ldots}^{+} B_{s, k}^{+}$ and k arc-disj. in-banching, $B_{s, 1,}^{-}, B_{s, 2,}^{-},-B_{s, k}^{-}$ and takins $A^{\prime}=\left(\bigcup_{i} A\left(B_{s, i}^{\dagger}\right)\right) \cup\left(\cup A\left(B_{s, j}^{-}\right)\right)$works

Let $f(n, k)$ be the smallest integer sit. every k-arc-utrong tournament Ton nvertiu) has) a sp- k-arc-otwins $D^{\prime}=\left(V_{1} A^{\prime}\right)$ with $\left|A^{\prime}\right| \sum f(n, h)$

Theorem ($B-$), Huang, $Y_{<0}$)

$$
f(n, k) \leq n k+136 k^{2}
$$

Let $\delta \geq k(D)$ denote the minimum number of arc) in a spanning sobdisruph D^{l} of D in which

$$
\delta_{D_{1}^{\prime}}^{+} \delta_{D^{\prime}}^{-} \geq k
$$

Conjecture (B-J, Ituans, Yes)
For every k-arc-strong tournament T the number of arcs in a smallest certificate for $\lambda(T)=k$ is exactly $\delta_{\geq k}(T)$

Theorem ($B-J$, Koans, $Y_{\text {es }}$)
Even tournament $T=(V, A)$ with $\lambda(T)=k$ has a spanning subdigraph $D^{\prime}=\left(V, A^{\prime}\right)$ with $\delta_{D^{\prime}}^{+}, \delta_{D^{\prime}}^{-} \geq k$ and $\left|A^{\prime}\right| \leq n k+\binom{k+1}{2}$. If T is alpo k-arc-stons then ω_{c} can find D^{\prime} s.t. $\left|A^{\prime}\right| \leq n k+\binom{k}{2}$ A^{\prime} can be found in polynomial time (via flows)

Coyjacton (B-J, Huns, Yo)
I polynomial alsonthm for finctirs an op timal (minimum size) certificate for k-arc-otrons conneehvits for a given tournament T with $\lambda(T)=k$.

Theorem (Kangctal)
Every k-strong tournament on n vertices contains a spanning k-strong soddigraph on at most $n k+750 k^{2} \log (k t 1) \operatorname{arcs}$

Orienting a graph to avoid even directed cycle,

Theorem (chung et al)
Every strong digraph on n vertices and at least $\left(\frac{n+1}{2}\right)^{2}+1$ arcs has an even cycle. Best possibu!
Evomstrons orientation of the Petersen graph has an even cych
Problem (B-J)
what is the complexity of deciding whether a given input graph G has a strong orientation with no even oych?

Prodem (B-J)
Docs then exist a polynomial algonthm which given a graph G decide, whether G has a strong orientation D with no two $\left(y(h) ~ C, C^{\prime}\right.$ s.t $\quad\left||c|-\left|c^{\prime}\right|\right|=1$?

Linkages in 'almost acydic digraph
Theorem (Fortuncetal)
The k-linkage and the weak- k-lin kan (arc-disj path) is polynomial for every fixed k in acyclic digraphs

The circumference of a digraph D is the length of a longest code in 1)

Theorem (B-J, Christiansen)
If the circumference of D is at most p then D has DAG width at most P and hence directed. tree width at moot $3 p+l$

Corollary For every integer ρ
The k-linkage problem is polynomial
Problem (B-J, christian)
Determine the complexity of the weak $-k$-linsang philem for digraphs of circumference p.

- polynomial for $p=2$
- open already for $p=3$

Miscellaneous problems
Problem (B-J)
what is the complexity of finding a hamiltonian cych C in a strong semicomplek digraph $D_{A}(v, A)$ which minimizes $\left|A(C) \cap A_{2}\right|$ when $A_{2}=\{u v \in A \mid v u \in A\}$

Problem (B-J)
Can we decich if then is a hamiltonian cycle with no are from A_{2} in polynomial time?
A digraph D is path-mergeable if the following holds $\forall P_{1}, P_{2}$ internally disjoint paths with the some initial vertex x and terminal (vertex
 I an (X, y)-path P in D s.t $V(P)=V\left(P_{1}\right) \cup V\left(P_{2}\right)$ path-merpeable digraphs can de recognized un polynomial time.

Theorem (B-))
A path mersastle digraph D has a hamiltonian asch if and only if $G(D)$ is 2 -connected and D is strong One can find a hamiltonian cych in polynomial time when one exists
Problem (B-J)
Determine the complexity of the hamiltonian path problem for path mergeable digraphs.

