Minimal number of inversion to make a digraph strong

Julien Duron, Frédéric Havet, Florian Hörsch

Clément Rambaud

ANR Digraph, Sète
May 2023

Inversion: definition

D

Inversion: definition

$D, X \subseteq V(D)$

Inversion: definition

$\operatorname{Inv}(D ; X)$

Inversion: definition

$\operatorname{Inv}(D ; X), Y \subseteq V(D)$

Inversion: definition

$\operatorname{Inv}(D ; X, Y)=\operatorname{Inv}(D ; Y, X)$

Some questions

We have a notion of distance:

$$
\operatorname{dist}\left(\vec{G}_{1}, \vec{G}_{2}\right)=\min _{k} \text { s.t. } \exists X_{1}, \ldots X_{k}, \vec{G}_{2}=\operatorname{Inv}\left(\vec{G}_{1}, X_{1}, \ldots, X_{k}\right)
$$

Some questions

We have a notion of distance:
$\operatorname{dist}\left(\vec{G}_{1}, \overrightarrow{G_{2}}\right)=\min _{k}$ s.t. $\exists X_{1}, \ldots X_{k}, \overrightarrow{G_{2}}=\operatorname{Inv}\left(\vec{G}_{1}, X_{1}, \ldots, X_{k}\right)$.

1. What is the minimum distance between \vec{G} and an acyclic orientation of G ?

Some questions

We have a notion of distance:
$\operatorname{dist}\left(\vec{G}_{1}, \vec{G}_{2}\right)=\min _{k}$ s.t. $\exists X_{1}, \ldots X_{k}, \vec{G}_{2}=\operatorname{Inv}\left(\vec{G}_{1}, X_{1}, \ldots, X_{k}\right)$.

1. What is the minimum distance between \vec{G} and an acyclic orientation of G ?
2. What is the minimum distance between \vec{G} and a k-strong orientation of G ?

Some questions

We have a notion of distance:

$$
\operatorname{dist}\left(\vec{G}_{1}, \vec{G}_{2}\right)=\min _{k} \text { s.t. } \exists X_{1}, \ldots X_{k}, \vec{G}_{2}=\operatorname{Inv}\left(\vec{G}_{1}, X_{1}, \ldots, X_{k}\right)
$$

1. What is the minimum distance between \vec{G} and an acyclic orientation of G ?
2. What is the minimum distance between \vec{G} and a k-strong orientation of G ?
3. What is the maximum distance between two orientations of G ?

Some questions

We have a notion of distance:
$\operatorname{dist}\left(\vec{G}_{1}, \vec{G}_{2}\right)=\min _{k}$ s.t. $\exists X_{1}, \ldots X_{k}, \vec{G}_{2}=\operatorname{Inv}\left(\vec{G}_{1}, X_{1}, \ldots, X_{k}\right)$.

1. What is the minimum distance between \vec{G} and an acyclic orientation of G ?
2. What is the minimum distance between \vec{G} and a k-strong orientation of G ?
3. What is the maximum distance between two orientations of G ?

Distance to a k-strong orientation

General problem: given a digraph D, what is the minimum distance to a k-vertex-strong (resp. k-arc-strong) digraph?

Observation: we need $n \geq 2 k+1$
Notation: $\operatorname{sinv}_{k}(D)\left(\right.$ resp. $\left.\operatorname{sinv}_{k}^{\prime}(D)\right)$

First observation

Key lemma (Folklore)
If $D-v$ is k-strong and there exists $2 k$ different vertices, k of which are in $N^{+}(v)$ and the k others in $N^{-}(v)$, then D is k-strong.

Complexity

Theorem
For every positive k, t the problem
Input: D a digraph.
Output: $\operatorname{sinv}_{k}(D) \leq t$.
Is NP-hard.

Complexity, cut cover

Idea : reduce from CUT COVER.
t-CUT COVER
Entry: G a graph.
Answer: $\exists X_{1}, \ldots, X_{t}$ s.t. each edge of G is contained in one of the cuts $E\left(X_{i}, X_{i}^{c}\right)$.

Complexity, cut cover

Idea : reduce from CUT COVER.
t-CUT COVER
Entry: G a graph.
Answer: $\exists X_{1}, \ldots, X_{t}$ s.t. each edge of G is contained in one of the cuts $E\left(X_{i}, X_{i}^{c}\right)$.

Remark
For any graph G, the cut cover number of G is $\lfloor\log \chi(G)\rfloor$.

Corollary
There is no $(2-\varepsilon)$-approximation of sinv_{k}.

Sketch proof

For each cut X in the cut cover, we consider the inversion

$$
X^{\prime}=X \bigcup_{e_{i} \in \operatorname{cut}(X)} E_{i}^{1}
$$

Distance to a k-strong orientation: general bound

Theorem

$$
\operatorname{sinv}_{k}(T) \leq 2 k
$$

Proof sketch:

- pick $S=\left\{s_{1}, \ldots, s_{2 k+1}\right\} \subseteq V(T)$, partition $\left\{s_{1}, \ldots, s_{2 k}\right\}$ into S^{+}, S^{-}of size k
- iteratively make $T\langle S\rangle k$-strong with $2 k$ inversions and s.t.

$$
S^{+} \subseteq N^{+}(v) \cap S, S^{-} \subseteq N^{-}(v) \cap S \text { for all } v \notin S
$$

$X_{i}=\left\{s_{i}\right\} \cup\left\{s_{j} \in S\right.$ badly oriented with $\left.s_{i}, j>i\right\} \cup\{v \notin$
S badly oriented with $\left.s_{i}\right\}$

Distance to a k-strong orientation: single inversion

Theorem
If $n \geq 2^{4 k-1}$ then $\operatorname{sinv}_{k}(T) \leq 1$.

Distance to a k-strong orientation: single inversion

Theorem
If $n \geq 2^{4 k-1}$ then $\operatorname{sinv}_{k}(T) \leq 1$.

Lemma
If T contains $A \Rightarrow B \Rightarrow C$ with $|A|=|C|=k$ and $|B|=2 k-1$, then $\operatorname{sinv}_{k}(T) \leq 1$.

Distance to a k-strong orientation: single inversion
Theorem
If $n \geq 2^{4 k-1}$ then $\operatorname{sinv}_{k}(T) \leq 1$.

Lemma
If T contains $A \Rightarrow B \Rightarrow C$ with $|A|=|C|=k$ and $|B|=2 k-1$, then $\operatorname{sinv}_{k}(T) \leq 1$.

Distance to a k-strong orientation: single inversion
Theorem
If $n \geq 2^{4 k-1}$ then $\operatorname{sinv}_{k}(T) \leq 1$.

Lemma
If T contains $A \Rightarrow B \Rightarrow C$ with $|A|=|C|=k$ and $|B|=2 k-1$, then $\operatorname{sinv}_{k}(T) \leq 1$.

Proof of the lemma: let $S=A \cup B \cup C$.

$$
X=A \cup C \cup\left\{v \notin S| | N^{+}(v) \cap S \mid<k \text { or }\left|N^{-}(v) \cap S\right|<k\right\}
$$

A linear bound

Theorem
If $n \geq 19 k-2$, then $\operatorname{sinv}_{k}(T) \leq 1$.

A linear bound

Theorem
If $n \geq 19 k-2$, then $\operatorname{sinv}_{k}(T) \leq 1$.

Our tool: median orders
Orders that minimize the number of backward arcs.

A linear bound

Theorem
If $n \geq 19 k-2$, then $\operatorname{sinv}_{k}(T) \leq 1$.

Our tool: median orders
Orders that minimize the number of backward arcs.
Facts on median orders.
For any tournament T, and $\left(v_{1}, \ldots, v_{n}\right)$ a median order on T, then:

- for all $i<j, v_{i}, \ldots, v_{j}$ is a median order of $T\left[v_{i}, v_{j}\right]$.
- for all $i<j, v_{i}$ is adjacent to at least half of v_{i}, \ldots, v_{j}.

Connectivity in median orders

For a tournament T and $v \in V(T)$ let $R_{T}^{+}(v)$ the set of vertices reachable from v.

Connectivity in median orders

For a tournament T and $v \in V(T)$ let $R_{T}^{+}(v)$ the set of vertices reachable from v.

Lemma
For any tournament T, for any median order $\left(v_{1}, \ldots, v_{n}\right)$ on T, for any $F \subseteq V(T)$ we have: $\left|R_{T-F}^{+}\left(v_{1}\right)\right| \geq|T|-2|F|$.

Connectivity in median orders

For a tournament T and $v \in V(T)$ let $R_{T}^{+}(v)$ the set of vertices reachable from v.

Lemma
For any tournament T, for any median order $\left(v_{1}, \ldots, v_{n}\right)$ on T, for any $F \subseteq V(T)$ we have: $\left|R_{T-F}^{+}\left(v_{1}\right)\right| \geq|T|-2|F|$.

Connectivity in median orders

For a tournament T and $v \in V(T)$ let $R_{T}^{+}(v)$ the set of vertices reachable from v.

Lemma

For any tournament T, for any median order $\left(v_{1}, \ldots, v_{n}\right)$ on T, for any $F \subseteq V(T)$ we have: $\left|R_{T-F}^{+}\left(v_{1}\right)\right| \geq|T|-2|F|$.

Connectivity in median orders

For a tournament T and $v \in V(T)$ let $R_{T}^{+}(v)$ the set of vertices reachable from v.

Lemma
For any tournament T, for any median order $\left(v_{1}, \ldots, v_{n}\right)$ on T, for any $F \subseteq V(T)$ we have: $\left|R_{T-F}^{+}\left(v_{1}\right)\right| \geq|T|-2|F|$.

Corollary
If $|T| \geq 4 k+2$ and $|F|=k$, there is a path $v_{1} \rightarrow v_{n}$ in $T-F$.

How to connect two subtournaments

Lemma
If A and B are two disjoint subtournaments of T of size $6 k$, then in a single inversion, one can ensure for every $|F| \leq k-1$:

- For every $a \in A \backslash F$, there is a path in $T \backslash F$ from a to $B \backslash F$.
- For every $b \in B \backslash F$, there is a path in $T \backslash F$ from $A \backslash F$ to b.

Proof sketch

median orders

Proof sketch

Proof sketch

Proof sketch

Proof sketch

$$
\operatorname{Inv}\left(A_{0} \cup A_{1} \cup B_{0}, \cup B_{1}\right)
$$

Proof sketch

From median order

Final argument

T with median order

Final argument

Apply lemma on A and B !

Distance to a k-strong orientation: asymptotic

By drawing inversions at random:
Theorem
There is a function $f: \mathbb{R}_{>0} \rightarrow \mathbb{N}$ s.t. for every $\varepsilon>0$ and every integer k, if T is a n-vertex tournament with $n \geq 2 k+1+\varepsilon k$, then $\operatorname{sinv}_{k}(T) \leq f(\varepsilon)$.

Key lemma

If T is not k-strong then one of the following happens:
E_{1} : there is a vector $z \in \mathbb{F}_{2}^{t} \backslash\{\overrightarrow{0}\}$ such that $|\{v \in V(T) \mid \vec{v} \neq z\}| \leq k$,
E_{2} : there are $u, v \in V(T)$ with $\vec{u} \neq \vec{v}$ such that $\min \left\{\left|N_{T^{\prime}}^{+}(u) \cap N_{T^{\prime}}^{-}(v)\right|,\left|N_{T^{\prime}}^{+}(u) \cap N_{T^{\prime}}^{+}(v)\right|,\left|N_{T^{\prime}}^{-}(u) \cap N_{T^{\prime}}^{-}(v)\right|\right\} \leq$ $(1+\varepsilon / 4) \frac{k}{2}$,
E_{3} : there are disjoint sets $A, B \subseteq V\left(T^{\prime}\right)$ with $|A|,|B| \geq(1+\varepsilon / 4) \frac{k}{2}$ with no directed (A, B)-matching of size $\frac{k}{2}$.

Distance to a k-strong orientation: lower bounds

By a counting argument
Theorem
There is a tournament T on $2 k+1$ vertices s.t. $\operatorname{sinv}_{k}(T) \geq \frac{1}{3} \log (2 k+1)$.

Indeed, (McKay, 90) proved that the number of labeled Eulerian tournaments on n vertices is

$$
\left(\frac{2^{n+1}}{\pi n}\right)^{(n-1) / 2} \sqrt{\frac{n}{e}}(1+o(1))
$$

Open questions

Problem
What is the maximum value of $\operatorname{sinv}_{k}(T)$ over every tournaments on at least $2 k+1$ vertices?

Problem
Can we show that sinv_{k} is non-increasing?

