Minimal number of inversion to make a digraph strong

Julien Duron, Frédéric Havet, Florian Hörsch Clément Rambaud

ANR Digraph, Sète May 2023

D

 $D, X \subseteq V(D)$

 $\operatorname{Inv}(D; X)$

 $\operatorname{Inv}(D; X), Y \subseteq V(D)$

 $\operatorname{Inv}(D; X, Y) = \operatorname{Inv}(D; Y, X)$

$$\mathsf{dist}(\vec{G_1},\vec{G_2}) = \min_k \; \mathsf{s.t.} \; \exists X_1, \ldots X_k, \vec{G_2} = \mathrm{Inv}(\vec{G_1},X_1,\ldots,X_k).$$

We have a notion of distance:

$$\mathsf{dist}(\vec{G_1},\vec{G_2}) = \min_k \; \text{ s.t. } \; \exists X_1, \ldots X_k, \vec{G_2} = \mathrm{Inv}(\vec{G_1},X_1,\ldots,X_k).$$

1. What is the minimum distance between \vec{G} and an **acyclic** orientation of G?

$$\mathsf{dist}(\vec{G_1},\vec{G_2}) = \min_k \; \text{ s.t. } \; \exists X_1,\ldots X_k, \vec{G_2} = \mathrm{Inv}(\vec{G_1},X_1,\ldots,X_k).$$

- 1. What is the minimum distance between \vec{G} and an **acyclic** orientation of *G*?
- 2. What is the minimum distance between \vec{G} and a *k*-strong orientation of *G*?

$$\mathsf{dist}(\vec{G_1},\vec{G_2}) = \min_k \; \text{ s.t. } \; \exists X_1,\ldots X_k, \vec{G_2} = \mathrm{Inv}(\vec{G_1},X_1,\ldots,X_k).$$

- 1. What is the minimum distance between \vec{G} and an **acyclic** orientation of G?
- 2. What is the minimum distance between \vec{G} and a *k*-strong orientation of *G*?
- 3. What is the maximum distance between two orientations of *G*?

$$\mathsf{dist}(\vec{G_1},\vec{G_2}) = \min_k \; \text{ s.t. } \; \exists X_1,\ldots X_k, \vec{G_2} = \mathrm{Inv}(\vec{G_1},X_1,\ldots,X_k).$$

- 1. What is the minimum distance between \vec{G} and an **acyclic** orientation of *G*?
- 2. What is the minimum distance between \vec{G} and a k-strong orientation of G?
- 3. What is the maximum distance between two orientations of *G*?

General problem: given a digraph *D*, what is the minimum distance to a *k*-vertex-strong (resp. *k*-arc-strong) digraph?

Observation: we need $n \ge 2k + 1$

Notation: $\operatorname{sinv}_k(D)$ (resp. $\operatorname{sinv}'_k(D)$)

First observation

Key lemma (Folklore)

If D - v is k-strong and there exists 2k different vertices, k of which are in $N^+(v)$ and the k others in $N^-(v)$, then D is k-strong.

Complexity

Theorem

For every positive k, t the problem Input: D a digraph. Output: $\operatorname{sinv}_k(D) \leq t$. Is NP-hard.

Complexity, cut cover

Idea : reduce from CUT COVER.

t-CUT COVER

Entry: *G* a graph. Answer: $\exists X_1, \ldots, X_t$ s.t. each edge of *G* is contained in one of the cuts $E(X_i, X_i^c)$.

Complexity, cut cover

Idea : reduce from CUT COVER.

t-CUT COVER

Entry: *G* a graph. Answer: $\exists X_1, \ldots, X_t$ s.t. each edge of *G* is contained in one of the cuts $E(X_i, X_i^c)$.

Remark

For any graph G, the cut cover number of G is $\lfloor \log \chi(G) \rfloor$.

Corollary

There is no $(2 - \varepsilon)$ -approximation of sinv_k .

For each cut X in the cut cover, we consider the inversion

$$X' = X \bigcup_{e_i \in \mathsf{cut}(X)} E_i^1.$$

Distance to a *k*-strong orientation: general bound Theorem

$$\operatorname{sinv}_k(T) \leq 2k$$

Proof sketch:

- ▶ pick $S = \{s_1, \ldots, s_{2k+1}\} \subseteq V(T)$, partition $\{s_1, \ldots, s_{2k}\}$ into S^+, S^- of size k
- ▶ iteratively make $T\langle S \rangle$ k-strong with 2k inversions and s.t. $S^+ \subseteq N^+(v) \cap S, S^- \subseteq N^-(v) \cap S$ for all $v \notin S$

 $X_i = \{s_i\} \cup \{s_j \in S \text{ badly oriented with } s_i, j > i\} \cup \{v \notin S \text{ badly oriented with } s_i\}$

Theorem

If $n \geq 2^{4k-1}$ then $\operatorname{sinv}_k(T) \leq 1$.

Theorem

If $n \geq 2^{4k-1}$ then $\operatorname{sinv}_k(T) \leq 1$.

Lemma

If T contains $A \Rightarrow B \Rightarrow C$ with |A| = |C| = k and |B| = 2k - 1, then $\operatorname{sinv}_k(T) \le 1$.

Theorem

If $n \geq 2^{4k-1}$ then $\operatorname{sinv}_k(T) \leq 1$.

Lemma

If T contains $A \Rightarrow B \Rightarrow C$ with |A| = |C| = k and |B| = 2k - 1, then $\operatorname{sinv}_k(T) \le 1$.

Theorem

If $n \geq 2^{4k-1}$ then $\operatorname{sinv}_k(T) \leq 1$.

Lemma

If T contains $A \Rightarrow B \Rightarrow C$ with |A| = |C| = k and |B| = 2k - 1, then $\operatorname{sinv}_k(T) \le 1$.

Proof of the lemma: let $S = A \cup B \cup C$.

 $X = A \cup C \cup \{ v \notin S \mid |N^+(v) \cap S| < k \text{ or } |N^-(v) \cap S| < k \}$

A linear bound

Theorem If $n \ge 19k - 2$, then $\operatorname{sinv}_k(T) \le 1$.

A linear bound

Theorem

If $n \ge 19k - 2$, then $\operatorname{sinv}_k(T) \le 1$.

Our tool: median orders

Orders that minimize the number of backward arcs.

A linear bound

Theorem

If $n \ge 19k - 2$, then $\operatorname{sinv}_k(T) \le 1$.

Our tool: median orders

Orders that minimize the number of backward arcs.

Facts on median orders.

For any tournament T, and (v_1, \ldots, v_n) a median order on T, then:

- ▶ for all i < j, v_i, \ldots, v_j is a median order of $T[v_i, v_j]$.
- for all i < j, v_i is adjacent to at least half of v_i, \ldots, v_j .

For a tournament T and $v \in V(T)$ let $R_T^+(v)$ the set of vertices reachable from v.

For a tournament T and $v \in V(T)$ let $R_T^+(v)$ the set of vertices reachable from v.

Lemma

For any tournament T, for any median order (v_1, \ldots, v_n) on T, for any $F \subseteq V(T)$ we have: $|R_{T-F}^+(v_1)| \ge |T| - 2|F|$.

For a tournament T and $v \in V(T)$ let $R_T^+(v)$ the set of vertices reachable from v.

Lemma

For any tournament T, for any median order (v_1, \ldots, v_n) on T, for any $F \subseteq V(T)$ we have: $|R_{T-F}^+(v_1)| \ge |T| - 2|F|$.

For a tournament T and $v \in V(T)$ let $R_T^+(v)$ the set of vertices reachable from v.

Lemma

For any tournament T, for any median order (v_1, \ldots, v_n) on T, for any $F \subseteq V(T)$ we have: $|R_{T-F}^+(v_1)| \ge |T| - 2|F|$.

Connectivity in median orders

For a tournament T and $v \in V(T)$ let $R_T^+(v)$ the set of vertices reachable from v.

Lemma

For any tournament T, for any median order (v_1, \ldots, v_n) on T, for any $F \subseteq V(T)$ we have: $|R_{T-F}^+(v_1)| \ge |T| - 2|F|$.

Corollary

If $|T| \ge 4k + 2$ and |F| = k, there is a path $v_1 \rightarrow v_n$ in T - F.

Lemma

If A and B are two disjoint subtournaments of T of size 6k, then in a single inversion, one can ensure for every $|F| \le k - 1$:

For every $a \in A \setminus F$, there is a path in $T \setminus F$ from a to $B \setminus F$.

For every $b \in B \setminus F$, there is a path in $T \setminus F$ from $A \setminus F$ to b.

$$|A| = 6k$$
median orders
$$|B| = 6k$$

$\mathsf{Inv}(A_0 \cup A_1 \cup B_0, \cup B_1)$

Final argument

 $\ensuremath{\mathcal{T}}$ with median order

Final argument

Apply lemma on A and B!

By drawing inversions at random:

Theorem

There is a function $f : \mathbb{R}_{>0} \to \mathbb{N}$ s.t. for every $\varepsilon > 0$ and every integer k, if T is a *n*-vertex tournament with $n \ge 2k + 1 + \varepsilon k$, then $\operatorname{sinv}_k(T) \le f(\varepsilon)$.

Key lemma

If T is not k-strong then one of the following happens:

- $$\begin{split} & E_1 \ : \ \text{there is a vector} \ z \in \mathbb{F}_2^t \setminus \{\vec{0}\} \ \text{such that} \\ & |\{v \in V(\mathcal{T}) \mid \vec{v} \neq z\}| \leq k, \end{split}$$
- $\begin{array}{l} {\it E}_2 \ : \ {\rm there} \ {\rm are} \ u,v \in V({\it T}) \ {\rm with} \ \vec{u} \neq \vec{v} \ {\rm such} \ {\rm that} \\ {\rm min}\{|N^+_{{\it T}'}(u) \cap N^-_{{\it T}'}(v)|, |N^+_{{\it T}'}(u) \cap N^+_{{\it T}'}(v)|, |N^-_{{\it T}'}(u) \cap N^-_{{\it T}'}(v)|\} \leq \\ {(1 + \varepsilon/4)\frac{k}{2}}, \end{array}$
- $\begin{array}{l} {\it E}_3 \ : \ {\rm there \ are \ disjoint \ sets} \ A,B\subseteq V({\it T}') \ {\rm with} \\ |A|,|B|\geq (1+\varepsilon/4)\frac{k}{2} \ {\rm with \ no \ directed} \ (A,B) {\rm -matching \ of \ size} \\ \frac{k}{2}. \end{array}$

Distance to a k-strong orientation: lower bounds

By a counting argument

Theorem

There is a tournament T on 2k + 1 vertices s.t. $\operatorname{sinv}_k(T) \geq \frac{1}{3} \log(2k + 1).$

Indeed, (McKay, 90) proved that the number of labeled Eulerian tournaments on n vertices is

$$\left(\frac{2^{n+1}}{\pi n}\right)^{(n-1)/2}\sqrt{\frac{n}{e}}(1+o(1)).$$

Open questions

Problem

What is the maximum value of $\operatorname{sinv}_k(T)$ over every tournaments on at least 2k + 1 vertices?

Problem

Can we show that sinv_k is non-increasing?