MAXIMUM LOCAL ARC-CONNECTIVITY AND DICHROMATIC NUMBER

P. Aboulker ${ }^{1}$, G. Aubian ${ }^{1,2}$, P. Charbit ${ }^{2}$
${ }^{1}$ TALGO, École Normale SupÉrieure ${ }^{2}$ IRIF, Université PARIS-Cité

NON-ORIENTED CASE

CHROMATIC NUMBER

Chromatic number

CHROMATIC NUMBER

$$
\chi(G)=3
$$

DEGREE

$$
d(u)=|\{u v \in E(G)\}|=2
$$

$$
\Delta(G)=\max _{v \in V} d(v)=3
$$

Degree

$$
\begin{gathered}
d(u)=|\{u v \in E(G)\}|=2 \\
\Delta(G)=\max _{v \in V} d(v)=3
\end{gathered}
$$

Lemma

$$
\chi(G) \leq \Delta(G)+1
$$

BROOKS' THEOREM

BROOKS' THEOREM

Theorem (Brooks, 1941)

Let G be a connected graph.
$\chi(G) \leq \Delta(G)+1$ and equality occurs if and only if G is :

- a cycle on an odd number of vertices or
- a complete graph on $\Delta(G)+1$ vertices.

MAXIMUM LOCAL EDGE-CONNECTIVITY

$$
\lambda(u, v)=3
$$

$$
\lambda(u, v)=3
$$

$$
\lambda(G)=\max _{u \neq v} \lambda(u, v)=3
$$

THE GOAL

Lemma

$$
\chi(G) \leq \lambda(G)+1
$$

THE GOAL

Lemma

$$
\chi(G) \leq \lambda(G)+1
$$

G is k-extremal if it is biconnected and $\chi(G)=\lambda(G)+1$

What are the k-extremal graphs ?

SOME k-EXTREMAL GRAPHS

SOME k-EXTREMAL GRAPHS

HAJÓS JOIN

D_{1}

D_{2}

D

Hajós Join

Lemma

Let G be the Hajós join of G_{1} and G_{2}. G is k-extremal if and only if so are G_{1} and G_{2}.

RESULTS

Theorem (Aboulker, Brettell, Havet, Marx, Trotignon, 2017)
2-extremal graphs = odd cycles.
Theorem (Aboulker, Brettell, Havet, Marx, Trotignon, 2017)
3-extremal graphs $=$ odd wheels + Hajós joins
Theorem (Stiebitz, Toft, 2016)
If $k \geq 4, k$-extremal graphs $=K_{k}+$ Hajós joins

DIRECTED CASE

DICHROMATIC NUMBER

DICHROMATIC NUMBER

DICHROMATIC NUMBER

$$
\vec{\chi}(D)=2
$$

$$
\begin{gathered}
d^{\text {MIN }}(u)=\min \left(d^{-}(u), d^{+}(u)\right)=1 \\
d^{\text {MAX }}(u)=\max \left(d^{-}(u), d^{+}(u)\right)=3 \\
\Delta_{\text {MAX }}(G)=\max _{v \in V} d_{\text {MAX }}(v)=3 \\
\Delta_{\text {MIN }}(G)=\max _{v \in V} d_{\text {MIN }}(v)=1
\end{gathered}
$$

BROOKS' THEOREM FOR $\triangle_{\text {MIN }} ?$

Lemma

$$
\vec{\chi}(D) \leq \Delta_{\text {MIN }}(D)+1
$$

BROOKS' THEOREM FOR $\Delta_{\text {MIN }}$?

Lemma

$$
\vec{\chi}(D) \leq \Delta_{M I N}(D)+1
$$

Theorem (Aboulker, Aubian, 2021)

Let $k \geq 2$. The problem :
Input: a digraph D with $\Delta_{\text {MIN }}(D)=k$. Output: Does there exist a k-dicoloring of D ? is NP-complete.

BROOKS' THEOREM FOR $\Delta_{\text {MIN }}$?

Lemma

$$
\vec{\chi}(D) \leq \Delta_{\text {MIN }}(D)+1 \leq \Delta_{\text {MAX }}(D)+1
$$

Theorem (Aboulker, Aubian, 2021)

Let $k \geq 2$. The problem :
Input: a digraph D with $\Delta_{\text {MIN }}(D)=k$. Output: Does there exist a k-dicoloring of D ? is NP-complete.

BROOKS' THEOREM FOR $\triangle_{\text {MAX }}$

Theorem (Mohar, 2010)
Let G be a connected digraph.
$\vec{\chi}(G) \leq \Delta_{\text {max }}(G)+1$ and equality occurs if and only if G is :

- a directed cycle or
- a symmetric cycle of odd length or
- a complete digraph on $\Delta_{\max }(G)+1$ vertices.

\star

MAXIMUM LOCAL ARC-CONNECTIVITY

$$
\lambda(u, v)=2
$$

$$
\lambda(u, v)=2
$$

$$
\lambda(G)=\max _{u \neq v} \lambda(u, v)=2
$$

THE GOAL

Lemma (Neumann-Lara, 1982)

$$
\vec{\chi}(D) \leq \lambda(D)+1
$$

THE GOAL

Lemma (Neumann-Lara, 1982)

$$
\vec{\chi}(D) \leq \lambda(D)+1
$$

D is k-extremal if it is biconnected, strongly connected and $\vec{\chi}(D)=\lambda(D)+1$

What are the k-extremal digraphs ?

SOME EXTREMAL DIGRAPHS

Directed Hajós Join

D

Directed Hajós Join

Hajós BIJOIN

Hajós BIJoin

Lemma

Let D be the Hajós Bijoin of D_{1} and D_{2}. If D is k-extremal, so are D_{1} and D_{2}.

DECOMPOSITION THEOREM

Theorem

Let $k \geq 3$. If D is k-extremal, then either :
$\square D$ is a symmetric odd wheel (if $k=3$)

- $D=\overleftrightarrow{K}_{k}$
- D is a Directed Hajós Join
- D is a Hajós Bijoin

SKETCH OF PROOF FOR $k \geq 4$

Lemma

Let D a k-extremal digraph, and (X, \bar{X}) a dicut of D of size k. Then either D / X or D / \bar{X} is k-extremal.

■ Consider a minimum counterexample D

SKETCH OF PROOF FOR $k \geq 4$

Lemma

Let D a k-extremal digraph, and (X, \bar{X}) a dicut of D of size k. Then either D / X or D / \bar{X} is k-extremal.

■ Consider a minimum counterexample D

- If all dicuts of size k isolate a vertex, then D has at most one vertex of indegree and outdegree $>k$, conclude

SKETCH OF PROOF FOR $k \geq 4$

Lemma

Let D a k-extremal digraph, and (X, \bar{X}) a dicut of D of size k. Then either D / X or D / \bar{X} is k-extremal.

■ Consider a minimum counterexample D

- If all dicuts of size k isolate a vertex, then D has at most one vertex of indegree and outdegree $>k$, conclude
■ Otherwise, suppose D / X is k-extremal

SKETCH OF PROOF FOR $k \geq 4$

Lemma

Let D a k-extremal digraph, and (X, \bar{X}) a dicut of D of size k. Then either D / X or D / \bar{X} is k-extremal.

■ Consider a minimum counterexample D

- If all dicuts of size k isolate a vertex, then D has at most one vertex of indegree and outdegree $>k$, conclude
■ Otherwise, suppose D / X is k-extremal
- If D / X has a Directed Hajós Join or a Hajós Bijoin, so does D

SKETCH OF PROOF FOR $k \geq 4$

Lemma

Let D a k-extremal digraph, and (X, \bar{X}) a dicut of D of size k. Then either D / X or D / \bar{X} is k-extremal.

■ Consider a minimum counterexample D

- If all dicuts of size k isolate a vertex, then D has at most one vertex of indegree and outdegree $>k$, conclude
■ Otherwise, suppose D / X is k-extremal
- If D / X has a Directed Hajós Join or a Hajós Bijoin, so does D

■ Thus $D / X=\overleftrightarrow{K}_{k}$ and every $v \in \bar{X}$ has an \{in,out\}neighbour in X

SKETCH OF PROOF FOR $k \geq 4$

Lemma

Let D a k-extremal digraph, and (X, \bar{X}) a dicut of D of size k. Then either D / X or D / \bar{X} is k-extremal.

■ Consider a minimum counterexample D

- If all dicuts of size k isolate a vertex, then D has at most one vertex of indegree and outdegree $>k$, conclude
■ Otherwise, suppose D / X is k-extremal
- If D / X has a Directed Hajós Join or a Hajós Bijoin, so does D

■ Thus $D / X=\overleftrightarrow{K}_{k}$ and every $v \in \bar{X}$ has an \{in,out\}neighbour in X
■ Then, technical proof, sorry :'(

Hajós Tree join

Hajós Tree join

Lemma

The Hajós Tree Join of $D_{1} \ldots D_{n}$ is k-extremal if and only if $D_{1} \ldots D_{n}$ are k-extremal.

Hajós Tree join

StRUCTURE THEOREM

Theorem

The set of 3-extremal digraphs is the smallest set containing symmetric odd wheels and stable by Directed Hajós Joins and Hajós Tree Joins.

Theorem

Let $k \geq 4$. The set of k-extremal digraphs is the smallest set containing $\overleftrightarrow{K}_{k}$ and stable by Directed Hajós Joins and Hajós Tree Joins.

ALGORITHMIC RESULTS

FLOWER JOIN

Lemma

A parallel Hajós join of digraphs D_{1}, \ldots, D_{n} is k-extremal if and only if so is each D_{i}.

Parallel Join

Lemma

D is k-extremal if and only if so are both D_{B} and $D_{A C}$.

ALGORITHMIC RESULTS

Lemma

The set of 3-extremal digraphs is the smallest set that contains symmetric odd wheels and is stable by Parallel Joins, Flower Joins and Directed Hajós Joins.

Lemma

Let $k \geq 4$. The set of k-extremal digraphs is the smallest set that contains $\overleftrightarrow{K}_{k}$ and is stable by Parallel Joins, Flower Joins and Directed Hajós Joins.

ALGORITHMIC RESULTS

Lemma

The set of 3-extremal digraphs is the smallest set that contains symmetric odd wheels and is stable by Parallel Joins, Flower Joins and Directed Hajós Joins.

Lemma

Let $k \geq 4$. The set of k-extremal digraphs is the smallest set that contains $\overleftrightarrow{K}_{k}$ and is stable by Parallel Joins, Flower Joins and Directed Hajós Joins.

Theorem

The problem :
Input: a digraph D.
Output: Does $\vec{\chi}(D)=\lambda(D)+1$?
is NP-complete.

AND THEN ?

$k=2$

AND THEN?

If you are in Paris on 20/06, feel free to come to my PhD defence More details: phd.gaubian.xyz

