MAXIMUM LOCAL ARC-CONNECTIVITY AND DICHROMATIC NUMBER

P. ABOULKER¹, G. AUBIAN^{1,2}, P. CHARBIT²

¹TALGO, ÉCOLE NORMALE SUPÉRIEURE ²IRIF, Université Paris-Cité

0/30 P. Aboulker, G. Aubian, P. Charbit

Maximum local arc-connectivity and dichromati o / 30

NON-ORIENTED CASE

CHROMATIC NUMBER

CHROMATIC NUMBER

CHROMATIC NUMBER

Degree

$$d(u) = |\{uv \in E(G)\}| = 2$$
$$\Delta(G) = \max_{v \in V} d(v) = 3$$

Degree

$$d(u) = |\{uv \in E(G)\}| = 2$$
$$\Delta(G) = \max_{v \in V} d(v) = 3$$

Lemma

 $\chi(G) \leq \Delta(G) + 1$

BROOKS' THEOREM

Theorem (Brooks, 1941)

Let G be a connected graph. $\chi(G) \leq \Delta(G) + 1$ and equality occurs if and only if G is :

- a cycle on an odd number of vertices or
- a complete graph on $\Delta(G) + 1$ vertices.

MAXIMUM LOCAL EDGE-CONNECTIVITY

MAXIMUM LOCAL EDGE-CONNECTIVITY

MAXIMUM LOCAL EDGE-CONNECTIVITY

$$\lambda(u, v) = 3$$

$$\lambda(G) = \max_{u \neq v} \lambda(u, v) = 3$$

Lemma

$\chi(G) \leq \lambda(G) + 1$

Lemma

$\chi(G) \leq \lambda(G) + 1$

G is k-extremal if it is biconnected and $\chi(G) = \lambda(G) + 1$

What are the *k*-extremal graphs ?

Some *k*-extremal graphs

Some *k*-extremal graphs

Hajós Join

Hajós Join

Lemma

Let G be the Hajós join of G₁ and G₂. G is k-extremal if and only if so are G₁ and G₂. Theorem (Aboulker, Brettell, Havet, Marx, Trotignon, 2017)

2-extremal graphs = odd cycles.

Theorem (Aboulker, Brettell, Havet, Marx, Trotignon, 2017)

3-extremal graphs = odd wheels + Hajós joins

Theorem (Stiebitz, Toft, 2016)

If $k \ge 4$, k-extremal graphs = K_k + Hajós joins

DIRECTED CASE

DICHROMATIC NUMBER

DICHROMATIC NUMBER

DICHROMATIC NUMBER

 $\overrightarrow{\chi}(D) = 2$

MAXDEGREE AND MINDEGREE

$$d^{MIN}(u) = \min(d^{-}(u), d^{+}(u)) = 1$$

 $d^{MAX}(u) = \max(d^{-}(u), d^{+}(u)) = 3$
 $\Delta_{MAX}(G) = max_{v \in V}d_{MAX}(v) = 3$
 $\Delta_{MIN}(G) = max_{v \in V}d_{MIN}(v) = 1$

BROOKS' THEOREM FOR Δ_{MIN} ?

Lemma

$$\overrightarrow{\chi}(D) \leq \Delta_{MIN}(D) + 1$$

BROOKS' THEOREM FOR Δ_{MIN} ?

Lemma

$$\overrightarrow{\chi}(D) \leq \Delta_{MIN}(D) + 1$$

Theorem (Aboulker, Aubian, 2021)

Let $k \ge 2$. The problem : **Input:** a digraph D with $\Delta_{MIN}(D) = k$. **Output:** Does there exist a k-dicoloring of D ? is NP-complete.

BROOKS' THEOREM FOR Δ_{MIN} ?

Lemma

$$\overrightarrow{\chi}(D) \leq \Delta_{MIN}(D) + 1 \leq \Delta_{MAX}(D) + 1$$

Theorem (Aboulker, Aubian, 2021)

Let $k \ge 2$. The problem : **Input:** a digraph D with $\Delta_{MIN}(D) = k$. **Output:** Does there exist a k-dicoloring of D ? is NP-complete.

Theorem (Mohar, 2010)

Let G be a connected digraph. $\overrightarrow{\chi}(G) \leq \Delta_{MAX}(G) + 1$ and equality occurs if and only if G is :

- a directed cycle or
- a symmetric cycle of odd length or
- a complete digraph on $\Delta_{MAX}(G) + 1$ vertices.

MAXIMUM LOCAL ARC-CONNECTIVITY

MAXIMUM LOCAL ARC-CONNECTIVITY

MAXIMUM LOCAL ARC-CONNECTIVITY

 $\lambda(u,v) = 2$

$$\lambda(\mathsf{G}) = \max_{u \neq v} \lambda(u, v) = 2$$

Lemma (Neumann-Lara, 1982)

$\overrightarrow{\chi}(D) \leq \lambda(D) + 1$

Lemma (Neumann-Lara, 1982)

$\overrightarrow{\chi}(D) \leq \lambda(D) + 1$

D is k-extremal if it is biconnected, strongly connected and $\overrightarrow{\chi}(D) = \lambda(D) + 1$

What are the *k*-extremal digraphs ?

Some extremal digraphs

DIRECTED HAJÓS JOIN

Directed Hajós Join

Ηαιός Βιιοιν

Hajós Bijoin

Hajós Bijoin

Lemma

Let D be the Hajós Bijoin of D_1 and D_2 . If D is k-extremal, so are D_1 and D_2 .

Theorem

Let $k \ge 3$. If D is k-extremal, then either :

- D is a symmetric odd wheel (if k = 3) ■ D = $\overleftrightarrow{K}_{k}$
- D is a Directed Hajós Join
- D is a Hajós Bijoin

Let D a k-extremal digraph, and (X,\overline{X}) a dicut of D of size k. Then either D/X or D/ \overline{X} is k-extremal.

Consider a minimum counterexample D

- Consider a minimum counterexample D
- If all dicuts of size k isolate a vertex, then D has at most one vertex of indegree and outdegree > k, conclude

- Consider a minimum counterexample D
- If all dicuts of size k isolate a vertex, then D has at most one vertex of indegree and outdegree > k, conclude
- Otherwise, suppose *D*/*X* is *k*-extremal

- Consider a minimum counterexample D
- If all dicuts of size k isolate a vertex, then D has at most one vertex of indegree and outdegree > k, conclude
- Otherwise, suppose *D*/*X* is *k*-extremal
- If *D*/X has a Directed Hajós Join or a Hajós Bijoin, so does *D*

- Consider a minimum counterexample D
- If all dicuts of size k isolate a vertex, then D has at most one vertex of indegree and outdegree > k, conclude
- Otherwise, suppose *D*/*X* is *k*-extremal
- If *D*/*X* has a Directed Hajós Join or a Hajós Bijoin, so does *D*
- Thus $D/X = \overleftarrow{K}_k$ and every $v \in \overline{X}$ has an {in,out}neighbour in X

- Consider a minimum counterexample D
- If all dicuts of size k isolate a vertex, then D has at most one vertex of indegree and outdegree > k, conclude
- Otherwise, suppose *D*/*X* is *k*-extremal
- If *D*/X has a Directed Hajós Join or a Hajós Bijoin, so does *D*
- Thus $D/X = \overleftarrow{K}_k$ and every $v \in \overline{X}$ has an {in,out}neighbour in X
- Then, technical proof, sorry :'(

Lemma

The Hajós Tree Join of $D_1 \dots D_n$ is k-extremal if and only if $D_1 \dots D_n$ are k-extremal.

Theorem

The set of 3-extremal digraphs is the smallest set containing symmetric odd wheels and stable by Directed Hajós Joins and Hajós Tree Joins.

Theorem

Let $k \ge 4$. The set of k-extremal digraphs is the smallest set containing \overleftarrow{K}_k and stable by Directed Hajós Joins and Hajós Tree Joins.

ALGORITHMIC RESULTS

FLOWER JOIN

Lemma

A parallel Hajós join of digraphs D_1, \ldots, D_n is k-extremal if and only if so is each D_i .

PARALLEL JOIN

Lemma

D is k-extremal if and only if so are both D_B and D_{AC} .

The set of 3-extremal digraphs is the smallest set that contains symmetric odd wheels and is stable by Parallel Joins, Flower Joins and Directed Hajós Joins.

Lemma

Let $k \ge 4$. The set of k-extremal digraphs is the smallest set that contains \overleftarrow{K}_k and is stable by Parallel Joins, Flower Joins and Directed Hajós Joins.

The set of 3-extremal digraphs is the smallest set that contains symmetric odd wheels and is stable by Parallel Joins, Flower Joins and Directed Hajós Joins.

Lemma

Let $k \ge 4$. The set of k-extremal digraphs is the smallest set that contains \overleftarrow{K}_k and is stable by Parallel Joins, Flower Joins and Directed Hajós Joins.

Theorem

The problem : **Input:** a digraph D. **Output:** Does $\overrightarrow{\chi}(D) = \lambda(D) + 1$? is NP-complete.

27

AND THEN?

If you are in Paris on 20/06, feel free to come to my PhD defence More details: phd.gaubian.xyz