Colouring Kneser-type digraphs

Gil Puig i Surroca Joint work with Ararat Harutyunyan

LAMSADE - Université Paris Dauphine

1 June 2023

Let D = (V, A) be a simple directed graph.

Definition. A proper k-colouring of D is a partition of V into k parts $V_1, ..., V_k$ such that $D[V_1], ..., D[V_k]$ are acyclic. The dichromatic number of D, denoted by $\vec{\chi}(D)$, is the minimum k such that D has a proper k-colouring.

Let G = (V, E) be a simple undirected graph.

Definition. The *dichromatic number* of G is defined as

$$\vec{\chi}(G) = \max_{D \in \operatorname{or}(G)} \vec{\chi}(D).$$

For every integer k there exists an integer r(k) such that, for any undirected graph G satisfying $\chi(G) \ge r(k)$, we have that $\vec{\chi}(G) \ge k$.

For every integer k there exists an integer r(k) such that, for any undirected graph G satisfying $\chi(G) \ge r(k)$, we have that $\vec{\chi}(G) \ge k$.

r(1) = 1, r(2) = 3, r(3)?

Theorem (Mohar and Wu, 2016)

Let G be an undirected graph satisfying $\chi_f(G) \ge k$. Then

$$\vec{\chi}_f(G) \geq \frac{k}{4\log_2(2ek^2)}.$$

Definition. Let n, k be positive integers. The Kneser graph KG(n, k) is the graph with vertex set $\binom{[n]}{k}$ and where two vertices u, v are adjacent iff $u \cap v = \emptyset$.

Theorem (Lovász, 1978)

 $\chi(KG(n,k))=n-2k+2.$

< A > <

★ ∃ >

э

Theorem (Lovász, 1978)

 $\chi(KG(n,k))=n-2k+2.$

Theorem (Mohar and Wu, 2016)

 $\vec{\chi}(KG(n,k)) \geq \lfloor \frac{n-2k+2}{8\log_2 \frac{n}{k}} \rfloor.$

く 何 ト く ヨ ト く ヨ ト

æ

Theorem (Lovász, 1978)

 $\chi(KG(n,k)) = n - 2k + 2.$

Theorem (Mohar and Wu, 2016)

 $\vec{\chi}(KG(n,k)) \geq \lfloor \frac{n-2k+2}{8\log_2 \frac{n}{k}} \rfloor.$

Theorem (AH & GPS, 2023)

 $\vec{\chi}(KG(n,k)) \geq \lfloor \frac{n-2k+2}{16} \rfloor.$

イロト イポト イヨト イヨト 一日

Lemma

Let G be a graph of order $n \ge 2$ and D the random orientation of G obtained by orienting each edge independently with probability 1/2. If $\ell \ge 5 \log_2 n$, then a.a.s. every subgraph of G isomorphic to $K_{\ell,\ell}$ has a directed cycle in D.

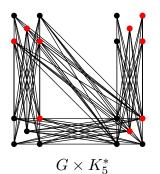
Definition. Let G = (V, E) and G' = (V', E') be graphs. Their *tensor* product $G \times G'$ is the graph with vertex set $V \times V'$ and where two vertices (u, u') and (v, v') are adjacent iff both u, v and u', v' are adjacent.

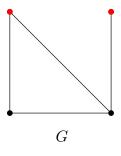
Lemma [MW16]

Let G be an undirected graph and k, m positive integers with $m/k \ge 2\log_2 m + 2$. There is an orientation D of $G \times K_m^*$ such that, if D is k-colourable, then G is k-colourable. (K_m^* is the complete graph on m vertices with loops.)

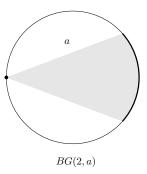
Lemma [MW16]

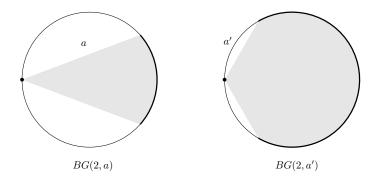
Let G be an undirected graph and k, m positive integers with $m/k \ge 2\log_2 m + 2$. There is an orientation D of $G \times K_m^*$ such that, if D is k-colourable, then G is k-colourable. (K_m^* is the complete graph on m vertices with loops.)





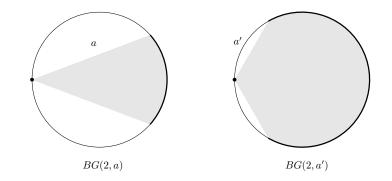
Definition. Let *n* be a non-negative integer and $a \in (0, 2)$ a real number. The *Borsuk graph* BG(n + 1, a) is the graph with vertex set $\{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}$ and where two vertices x, y are adjacent iff $||y - x|| \ge a$.





・ロト ・ 四ト ・ ヨト ・ ヨト ・

3

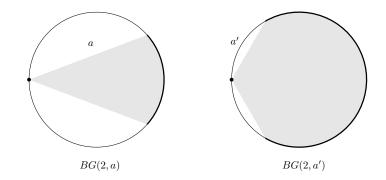


Theorem

$$\chi(BG(n+1,a)) \ge n+2.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

2



Theorem

$$\chi(BG(n+1,a)) \ge n+2.$$

Theorem (AH & GPS, 2023)

 $\vec{\chi}(BG(n+1,a)) \ge n+2.$

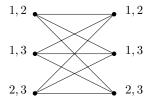
(ANR DIGRAPHS Workshop)

The list (di)chromatic number

æ

Let G be a (di)graph.

Definition. *G* is *k*-list colourable if for every assignment of *k*-lists to its vertices there is a proper colouring of *G* assigning to each vertex a colour from its list. The list (di)chromatic number of *G*, denoted by $\chi_{\ell}(G)$ (resp. by $\chi_{\ell}(G)$), is the minimum *k* such that *G* is *k*-list colourable.



Let G = (V, E) be an undirected graph.

Definition. The *list dichromatic number* of G is defined as

$$\vec{\chi}_{\ell}(G) = \max_{D \in \operatorname{or}(G)} \vec{\chi}_{\ell}(D).$$

Theorem (Bulankina and Kupavskii, 2022)

For any $\varepsilon \in \mathbb{R}^+$ and $2 \le k < n^{1/2-\varepsilon}$ there exist positive constants c_1, c_2 such that $c_1 n \ln n \le \chi_{\ell}(KG(n, k)) \le c_2 n \ln n$.

Theorem (Bulankina and Kupavskii, 2022)

For any $\varepsilon \in \mathbb{R}^+$ and $2 \le k < n^{1/2-\varepsilon}$ there exist positive constants c_1, c_2 such that $c_1 n \ln n \le \chi_{\ell}(KG(n, k)) \le c_2 n \ln n$.

Theorem (AH & GPS, 2023)

For any $\varepsilon \in \mathbb{R}^+$ and $2 \le k < n^{1/2-\varepsilon}$ there exist positive constants c_1, c_2 such that $c_1 n \ln n \le \vec{\chi}_{\ell}(KG(n, k)) \le c_2 n \ln n$.

Theorem (Bulankina and Kupavskii, 2022)

For any $\varepsilon \in \mathbb{R}^+$ and $2 \le k < n^{1/2-\varepsilon}$ there exist positive constants c_1, c_2 such that $c_1 n \ln n \le \chi_{\ell}(KG(n, k)) \le c_2 n \ln n$.

Theorem (AH & GPS, 2023)

For any $\varepsilon \in \mathbb{R}^+$ and $2 \le k < n^{1/2-\varepsilon}$ there exist positive constants c_1, c_2 such that $c_1 n \ln n \le \vec{\chi}_{\ell}(KG(n, k)) \le c_2 n \ln n$.

Q: What about larger k?

Some recurrent tricks (II): covering partitions

Let G = (V, E) be an undirected graph of order n.

Definition. An (s, t)-collection of V is a collection C of at most s subsets of V each of which has size at most t. We say that C covers a class of subsets of V if for every subset P in that class there is some $C \in C$ with $P \subseteq C$.

Let G = (V, E) be an undirected graph of order n.

Definition. An (s, t)-collection of V is a collection C of at most s subsets of V each of which has size at most t. We say that C covers a class of subsets of V if for every subset P in that class there is some $C \in C$ with $P \subseteq C$.

Lemma [BK22]

Assume that the independent sets of *G* are covered by an (s, t)-collection. Let *L* be the random ℓ -list assignment for *G* where each list is chosen uniformly and independently from a palette of *u* colours. If $4tu \leq (u - \ell)n$, then the probability that *G* can be properly coloured assigning to each vertex *v* a colour from L(v) is at most

$$s^{u} \exp\left\{-\frac{n}{2}2^{-\frac{4\ell tu}{(u-\ell)n}}\right\}$$

・ロト ・四ト ・ヨト ・ヨト

э

Let G = (V, E) be an undirected graph of order n.

Definition. An (s, t)-collection of V is a collection C of at most s subsets of V each of which has size at most t. We say that C covers a class of subsets of V if for every subset P in that class there is some $C \in C$ with $P \subseteq C$.

Lemma [BK22]

Assume that the independent sets of *G* are covered by an (s, t)-collection. Let *L* be the random ℓ -list assignment for *G* where each list is chosen uniformly and independently from a palette of *u* colours. If $4tu \le (u - \ell)n$, then the probability that *G* can be properly coloured assigning to each vertex *v* a colour from L(v) is at most

$$s^{u} \exp\left\{-\frac{n}{2}2^{-\frac{4\ell tu}{(u-\ell)n}}\right\}$$

・ロト ・四ト ・ヨト ・ヨト

э

Some recurrent tricks (II): semicovering tensor products

Definition. Let *D* be an orientation of $K_2 \times G$, *C* an (s, t)-collection of V(G), and $\lambda \in \mathbb{R}^+$. We say that the pair (\mathcal{C}, λ) semicovers the acyclic sets of *D* if for every acyclic set $S = (\{1\} \times S_1) \cup (\{2\} \times S_2)$

either $S_1 \subseteq C_1$ and $S_2 \subseteq C_2$ for some $C_1, C_2 \in C$,

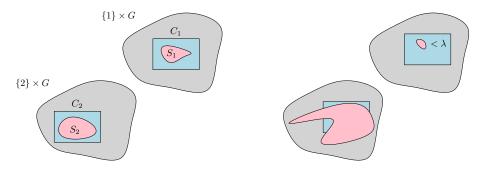
or $S_i \subseteq C$ and $|S_i| < \lambda$ for some $i \in \{1, 2\}$ and some $C \in C$.

Some recurrent tricks (II): semicovering tensor products

Definition. Let *D* be an orientation of $K_2 \times G$, *C* an (s, t)-collection of V(G), and $\lambda \in \mathbb{R}^+$. We say that the pair (\mathcal{C}, λ) semicovers the acyclic sets of *D* if for every acyclic set $S = (\{1\} \times S_1) \cup (\{2\} \times S_2)$

either $S_1 \subseteq C_1$ and $S_2 \subseteq C_2$ for some $C_1, C_2 \in \mathcal{C}$,

or $S_i \subseteq C$ and $|S_i| < \lambda$ for some $i \in \{1, 2\}$ and some $C \in C$.



Colouring Kneser-type digraphs

Lemma

Let G, H be graphs. Let m_G be the size of G and n_H the order of H. Let D be an orientation of $K_2 \times H$, and (\mathcal{C}, λ) an (s, t)-semicover of all acyclic sets of D. Let ℓ_1, ℓ_2 be positive integers such that

•
$$8t\ell_1 \le (\ell_1 - \ell_2)n_H$$
,
• $m_G s^{4\ell_1} \exp\left\{-n_H 2^{-\frac{8\ell_1\ell_2 t}{(\ell_1 - \ell_2)n_H}}\right\} < 1$
• $\lambda\ell_1 \le n_H$.
If $\vec{\chi}_\ell(G \times H) < \ell_2$, then $\chi_\ell(G) < \ell_1$.

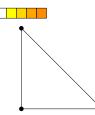
Some recurrent tricks (II): semicovering tensor products

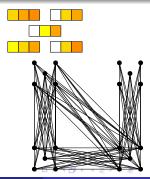
Lemma

• [...]

Let G, H be graphs. Let m_G be the size of G and n_H the order of H. Let D be an orientation of $K_2 \times H$, and (\mathcal{C}, λ) an (s, t)-semicover of all acyclic sets of D. Let ℓ_1, ℓ_2 be positive integers such that

If $\vec{\chi}_{\ell}(G \times H) \leq \ell_2$, then $\chi_{\ell}(G) \leq \ell_1$.





Colouring Kneser-type digraphs

Theorem

For any $\varepsilon \in \mathbb{R}^+$ and $2 \le k < n^{1/2-\varepsilon}$ there exist positive constants c_1, c_2 such that $c_1 n \ln n \le \vec{\chi}_{\ell}(KG(n, k)) \le c_2 n \ln n$.

э

By looking at the vertices of the form $A \cup B$ with $A \in {\binom{[n/2]}{k-2}}$ and $B \in {\binom{[n/2]+n/2}{2}}$.

э

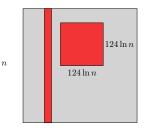
- 1) $KG(n/2, k-2) \times KG(n/2, 2)$ is a subgraph of KG(n, k).
- 2) $K_{n/4} \times K_{n/4}$ is a subgraph of KG(n/2, 2).

By looking at the vertices of the form $\{i, j\}$ with $1 \le i \le n/4 < j \le n/2$.

3

2) $K_{n/4} \times K_{n/4}$ is a subgraph of KG(n/2, 2).

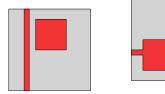
3) There is an orientation D of $K_2 \times (K_n \times K_n)$ such that all acyclic sets of D are semicovered by $(C_n, 2^{13} \ln^2 n)$, where C_n are the sets of the form



2) $K_{n/4} \times K_{n/4}$ is a subgraph of KG(n/2, 2).

3) There is an orientation D of $K_2 \times (K_n \times K_n)$ such that all acyclic sets of D are semicovered by $(C_n, 2^{13} \ln^2 n)$.

 $K_2 \times (K_n \times K_n)$



2) $K_{n/4} \times K_{n/4}$ is a subgraph of KG(n/2, 2).

3) There is an orientation D of $K_2 \times (K_n \times K_n)$ such that all acyclic sets of D are semicovered by $(C_n, 2^{13} \ln^2 n)$.

4) The lemma about semicovering tensor products is applied to $KG(n/2, k-2) \times (K_{n/4} \times K_{n/4})$.

Complete multipartite graphs

Let K_{m*r} be the complete multipartite graph with r parts and m vertices on each part.

э

Complete multipartite graphs

Let K_{m*r} be the complete multipartite graph with r parts and m vertices on each part.

Theorem (Alon, 1992)

There exist $c_1, c_2 \in \mathbb{R}^+$ such that $c_1 r \ln m \le \chi_\ell(K_{m*r}) \le c_2 r \ln m$ for every $m, r \ge 2$.

Complete multipartite graphs

Let K_{m*r} be the complete multipartite graph with r parts and m vertices on each part.

Theorem (Alon, 1992)

There exist $c_1, c_2 \in \mathbb{R}^+$ such that $c_1 r \ln m \le \chi_\ell(K_{m*r}) \le c_2 r \ln m$ for every $m, r \ge 2$.

Theorem (AH & GPS, 2023)

For every $\rho > 3$ there exist $c_1, c_2 \in \mathbb{R}^+$ such that $c_1 r \ln m \le \vec{\chi}_{\ell}(K_{m*r}) \le c_2 r \ln m$ for every $r \ge 2$ and $m \ge \ln^{\rho} r$.

Let K_{m*r} be the complete multipartite graph with r parts and m vertices on each part.

Theorem (Alon, 1992)

There exist $c_1, c_2 \in \mathbb{R}^+$ such that $c_1 r \ln m \le \chi_\ell(K_{m*r}) \le c_2 r \ln m$ for every $m, r \ge 2$.

Theorem (AH & GPS, 2023)

For every $\rho > 3$ there exist $c_1, c_2 \in \mathbb{R}^+$ such that $c_1 r \ln m \le \vec{\chi}_{\ell}(K_{m*r}) \le c_2 r \ln m$ for every $r \ge 2$ and $m \ge \ln^{\rho} r$.

Q: What about smaller *m*? We know that these asymptotics are not true in general: if $m \leq \ln r$ then $\vec{\chi}_{\ell}(K_{m*r}) \leq \vec{\chi}_{\ell}(K_{mr}) = O(r)$.

For every integer k there exists an integer r(k) such that, for any undirected graph G satisfying $\chi(G) \ge r(k)$, we have that $\vec{\chi}(G) \ge k$.

For every integer k there exists an integer r(k) such that, for any undirected graph G satisfying $\chi(G) \ge r(k)$, we have that $\vec{\chi}(G) \ge k$.

Unbounded fractional chromatic number

For every integer k there exists an integer r(k) such that, for any undirected graph G satisfying $\chi(G) \ge r(k)$, we have that $\vec{\chi}(G) \ge k$.

- Unbounded fractional chromatic number
- Random graphs on *n* vertices

For every integer k there exists an integer r(k) such that, for any undirected graph G satisfying $\chi(G) \ge r(k)$, we have that $\vec{\chi}(G) \ge k$.

- Unbounded fractional chromatic number
- Random graphs on *n* vertices
- Large spectral gap: $\lambda \le d/k 2(\log_2 k + 4)^2 \implies \vec{\chi}(G) > k$ (G d-reg.)