Directed max-cut and some generalizations

Anders Yeo

yeo@imada.sdu.dk
Department of Mathematics and Computer Science
University of southern Denmark
Campusvej 55, 5230 Odense M, Denmark
Joint work with: Jiangdong Ai, Argyrios Deligkas, Eduard Eiben, Stefanie Gerke, Gregory Gutin, Philip R. Neary and Yacong Zhou

Definitions

We will consider the directed max-cut problem and some of its generalizations.

What is the directed max-cut for these digraphs? Why?

Definitions

We will consider the directed max-cut problem and some of its generalizations.

What is the directed max-cut for these digraphs?

Definitions

We will consider the directed max-cut problem and some of its generalizations.

What is the directed max-cut for these digraphs? Why?

Regular digraphs

Let $\operatorname{mac}(D)$ denote the maximum number of arcs in a (X, Y)-cut in a digraph D and let $a_{D}(X, Y)$ denote the number of (X, Y)-arcs in D.

Analogously, let $\operatorname{mac}(G)$ denote the maximum number of edges in a (X, Y)-cut in a (undirected) graph G.

Question: If D is a eulerian digraph, what is $\operatorname{mac}(D)$?

Let $G=U G(D)$ (the underlying graph of $D)$ and let (X, Y) be any cut in G

As $d^{+}(x)=d^{-}(x)$ for all $x \in V(D)$ we note that
$a_{D}(X, Y)=a_{D}(Y, X)$ (any eulerian tour enters and leaves X
equally many times in D), so there are exactly half as many
(X, Y)-arcs in D and there are edges in G.

Regular digraphs

Let $\operatorname{mac}(D)$ denote the maximum number of arcs in a (X, Y)-cut in a digraph D and let $a_{D}(X, Y)$ denote the number of (X, Y)-arcs in D.

Analogously, let $\operatorname{mac}(G)$ denote the maximum number of edges in a (X, Y)-cut in a (undirected) graph G.

Question: If D is a eulerian digraph, what is $\operatorname{mac}(D)$?
Answer: $\operatorname{mac}(D)=\frac{\operatorname{mac}(U G(D))}{2}$.
Let $G=U G(D)$ (the underlying graph of D) and let (X, Y) be any cut in G.

As $d^{+}(x)=d^{-}(x)$ for all $x \in V(D)$ we note that $a_{D}(X, Y)=a_{D}(Y, X)$ (any eulerian tour enters and leaves X equally many times in D), so there are exactly half as many (X, Y)-arcs in D and there are edges in G.

Regular tournament

A tournament is an orientation of a complete graph.

Theorem 1: If T is a regular tournament of order n then $\operatorname{mac}(T)=\frac{1}{2} \cdot\left\lceil\frac{n}{2}\right\rceil \cdot\left\lfloor\frac{n}{2}\right\rfloor=\left\lfloor\frac{n^{2}}{8}\right\rfloor$.

Proof: As T is eulerian we note that

For a regular tournament T of order n and size m we have

So, the maximum cut contains slightly more than a quater of the $\operatorname{arcs}\left(\operatorname{mac}(T) \approx \frac{m}{4}+\frac{1+\sqrt{1+8 m}}{16} \approx \frac{m}{4}+\frac{\sqrt{2 m}}{8}\right)$

This will be useful to know later

Regular tournament

A tournament is an orientation of a complete graph.

Theorem 1: If T is a regular tournament of order n then $\operatorname{mac}(T)=\frac{1}{2} \cdot\left\lceil\frac{n}{2}\right\rceil \cdot\left\lfloor\frac{n}{2}\right\rfloor=\left\lfloor\frac{n^{2}}{8}\right\rfloor$.

Proof: As T is eulerian we note that $\operatorname{mac}(T)=\frac{\operatorname{mac}\left(K_{n}\right)}{2}=\frac{1}{2} \cdot\left\lceil\frac{n}{2}\right\rceil \cdot\left\lfloor\frac{n}{2}\right\rfloor=\frac{1}{2} \cdot\left\lfloor\frac{n^{2}}{4}\right\rfloor=\left\lfloor\frac{n^{2}}{8}\right\rfloor$.

For a regular tournament T of order n and size m we have $m=\frac{n(n-1)}{2}=\frac{n^{2}}{2}-\frac{n}{2}$, so $\operatorname{mac}(T)=\left\lfloor\frac{n^{2}}{8}\right\rfloor=\left\lfloor\frac{m}{4}+\frac{n}{8}\right\rfloor$

So, the maximum cut contains slightly more than a quater of the $\operatorname{arcs}\left(\operatorname{mac}(T) \approx \frac{m}{4}+\frac{1+\sqrt{1+8 m}}{16} \approx \frac{m}{4}+\frac{\sqrt{2 m}}{8}\right)$

This will be useful to know later

Regular tournament

A tournament is an orientation of a complete graph.

Theorem 1: If T is a regular tournament of order n then $\operatorname{mac}(T)=\frac{1}{2} \cdot\left\lceil\frac{n}{2}\right\rceil \cdot\left\lfloor\frac{n}{2}\right\rfloor=\left\lfloor\frac{n^{2}}{8}\right\rfloor$.

Proof: As T is eulerian we note that $\operatorname{mac}(T)=\frac{\operatorname{mac}\left(K_{n}\right)}{2}=\frac{1}{2} \cdot\left\lceil\frac{n}{2}\right\rceil \cdot\left\lfloor\frac{n}{2}\right\rfloor=\frac{1}{2} \cdot\left\lfloor\frac{n^{2}}{4}\right\rfloor=\left\lfloor\frac{n^{2}}{8}\right\rfloor$.

For a regular tournament T of order n and size m we have $m=\frac{n(n-1)}{2}=\frac{n^{2}}{2}-\frac{n}{2}$, so $\operatorname{mac}(T)=\left\lfloor\frac{n^{2}}{8}\right\rfloor=\left\lfloor\frac{m}{4}+\frac{n}{8}\right\rfloor$.

So, the maximum cut contains slightly more than a quater of the $\operatorname{arcs}\left(\operatorname{mac}(T) \approx \frac{m}{4}+\frac{1+\sqrt{1+8 m}}{16} \approx \frac{m}{4}+\frac{\sqrt{2 m}}{8}\right)$.

This will be useful to know later

Regular tournament

A tournament is an orientation of a complete graph.

Theorem 1: If T is a regular tournament of order n then $\operatorname{mac}(T)=\frac{1}{2} \cdot\left\lceil\frac{n}{2}\right\rceil \cdot\left\lfloor\frac{n}{2}\right\rfloor=\left\lfloor\frac{n^{2}}{8}\right\rfloor$.

Proof: As T is eulerian we note that $\operatorname{mac}(T)=\frac{\operatorname{mac}\left(K_{n}\right)}{2}=\frac{1}{2} \cdot\left\lceil\frac{n}{2}\right\rceil \cdot\left\lfloor\frac{n}{2}\right\rfloor=\frac{1}{2} \cdot\left\lfloor\frac{n^{2}}{4}\right\rfloor=\left\lfloor\frac{n^{2}}{8}\right\rfloor$.

For a regular tournament T of order n and size m we have $m=\frac{n(n-1)}{2}=\frac{n^{2}}{2}-\frac{n}{2}$, so $\operatorname{mac}(T)=\left\lfloor\frac{n^{2}}{8}\right\rfloor=\left\lfloor\frac{m}{4}+\frac{n}{8}\right\rfloor$.

So, the maximum cut contains slightly more than a quater of the $\operatorname{arcs}\left(\operatorname{mac}(T) \approx \frac{m}{4}+\frac{1+\sqrt{1+8 m}}{16} \approx \frac{m}{4}+\frac{\sqrt{2 m}}{8}\right)$.

This will be useful to know later.

We will consider the weighted version

We give a weight for each arc and we want to find a cut (X, Y) where the sum of the weights of all (X, Y)-arcs is maximum.

Let $w^{+}(x)$ denote the sum of the weight on the arcs leaving x and let $w^{-}(x)$ denote the sum of the weight on the arcs entering x.
 where $\operatorname{mac}(D)(\operatorname{mac}(G)$, resp.) now denotes the maximum weight of a cut in $D(G$, resp)

We will consider the weighted version

We give a weight for each arc and we want to find a cut (X, Y) where the sum of the weights of all (X, Y)-arcs is maximum.

Let $w^{+}(x)$ denote the sum of the weight on the arcs leaving x and let $w^{-}(x)$ denote the sum of the weight on the arcs entering x. If $w^{+}(x)=w^{-}(x)$ for all $x \in V(D)$ then $\operatorname{mac}(D)=\frac{\operatorname{mac}(U G(D))}{2}$ where $\operatorname{mac}(D)(\operatorname{mac}(G)$, resp.) now denotes the maximum weight of a cut in $D(G$, resp)

We will consider the weighted version

We give a weight for each arc and we want to find a cut (X, Y) where the sum of the weights of all (X, Y)-arcs is maximum.

Let $w^{+}(x)$ denote the sum of the weight on the arcs leaving x and let $w^{-}(x)$ denote the sum of the weight on the arcs entering x. If $w^{+}(x)=w^{-}(x)$ for all $x \in V(D)$ then $\operatorname{mac}(D)=\frac{\operatorname{mac}(U G(D))}{2}$ where $\operatorname{mac}(D)(\operatorname{mac}(G)$, resp.) now denotes the maximum weight of a cut in D (G, resp)

We will consider the weighted version

We give a weight for each arc and we want to find a cut (X, Y) where the sum of the weights of all (X, Y)-arcs is maximum.

Let $w^{+}(x)$ denote the sum of the weight on the arcs leaving x and let $w^{-}(x)$ denote the sum of the weight on the arcs entering x.

If $w^{+}(x)=w^{-}(x)$ for all $x \in V(D)$ then $\operatorname{mac}(D)=\frac{\operatorname{mac}(U G(D))}{2}$ where $\operatorname{mac}(D)(\operatorname{mac}(G)$, resp.) now denotes the maximum weight of a cut in $D(G, r e s p)$

We will consider the weighted version

We give a weight for each arc and we want to find a cut (X, Y) where the sum of the weights of all (X, Y)-arcs is maximum.

Let $w^{+}(x)$ denote the sum of the weight on the arcs leaving x and let $w^{-}(x)$ denote the sum of the weight on the arcs entering x.
If $w^{+}(x)=w^{-}(x)$ for all $x \in V(D)$ then $\operatorname{mac}(D)=\frac{\operatorname{mac}(U G(D))}{2}$, where $\operatorname{mac}(D)(\operatorname{mac}(G)$, resp.) now denotes the maximum weight of a cut in D (G, resp)

If $w^{+}(x) \neq w^{-}(x)$ for some x

Let D be an arc-weighted digraph and let $w(D)$ denote the sum of all weights in D.

If D is weighted-eulerian $\left(w^{+}(x)=w^{-}(x)\right.$ for all $\left.x\right)$ then $\theta(D)=0$

If we multiply all arcs in D by some constant $c>0$ then this does not change $\theta(D)$ (and does not change which cut is maximum)

Theorem 2, [1]: $\operatorname{mac}(D) \geq I(\theta(D)) \cdot w(D)$, where

The bound is tight.

If $w^{+}(x) \neq w^{-}(x)$ for some x

Let D be an arc-weighted digraph and let $w(D)$ denote the sum of all weights in D.

Let $\theta(D)=\frac{\sum_{x \in V(D)} \max \left\{0, w^{+}(x)-w^{-}(x)\right\}}{w(D)}$.
If D is weighted-eulerian $\left(w^{+}(x)=w^{-}(x)\right.$ for all $\left.x\right)$ then
$\theta(D)=0$.
If we multiply all arcs in D by some constant $c>0$ then this does not change $\theta(D)$ (and does not change which cut is maximum)

Theorem 2, [1]: $\operatorname{mac}(D) \geq I(\theta(D)) \cdot w(D)$, where

The bound is tight.

Let D be an arc-weighted digraph and let $w(D)$ denote the sum of all weights in D.
Let $\theta(D)=\frac{\sum_{x \in V(D)} \max \left\{0, w^{+}(x)-w^{-}(x)\right\}}{w(D)}$.
If D is weighted-eulerian $\left(w^{+}(x)=w^{-}(x)\right.$ for all $\left.x\right)$ then $\theta(D)=0$.

If we multiply all arcs in D by some constant $c>0$ then this does not change $\theta(D)$ (and does not change which cut is maximum) Theorem 2, [1]: $\operatorname{mac}(D) \geq 1(0(D)) \cdot w(D)$, where

The bound is tight.

Let D be an arc-weighted digraph and let $w(D)$ denote the sum of all weights in D.
Let $\theta(D)=\frac{\sum_{x \in V(D)} \max \left\{0, w^{+}(x)-w^{-}(x)\right\}}{w(D)}$.
If D is weighted-eulerian $\left(w^{+}(x)=w^{-}(x)\right.$ for all $\left.x\right)$ then $\theta(D)=0$.

If we multiply all arcs in D by some constant $c>0$ then this does not change $\theta(D)$ (and does not change which cut is maximum).

Theorem 2, [1]: $\operatorname{mac}(D) \geq I(\theta(D)) \cdot w(D)$, where

$$
I(\theta)= \begin{cases}\left(\frac{1}{4}+\frac{\theta^{2}}{4(1-2 \theta)}\right) & \text { if } \theta<1 / 3 ; \\ \theta & \text { if } \theta \geq 1 / 3 .\end{cases}
$$

The bound is tight.

If $\theta(D) \geq 1 / 3$ then we simply put all vertices, x, with $w^{+}(x)>w^{-}(x)$ in X and all other vertices in Y.

If $\theta(D)<1 / 3$, then the proof uses a probabilistic argument

Let $\bar{p}=\frac{\theta}{2(1-2 \theta)}$ and place any vertex with $w^{+}(x)>w^{-}(x)$ in X with probability $(1 / 2+\bar{p})$,

Any vertex with $w^{+}(x) \leq w^{-}(x)$ we place in Y with probability $(1 / 2+\bar{p})$

We then look at the average weight of the (X, Y)-cut.

If $\theta(D) \geq 1 / 3$ then we simply put all vertices, x, with $w^{+}(x)>w^{-}(x)$ in X and all other vertices in Y.

If $\theta(D)<1 / 3$, then the proof uses a probabilistic argument

Any vertex with $w^{+}(x) \leq w^{-}(x)$ we place in Y with probability $(1 / 2+\bar{p})$

We then look at the average weight of the (X, Y)-cut.

If $\theta(D) \geq 1 / 3$ then we simply put all vertices, x, with
$w^{+}(x)>w^{-}(x)$ in X and all other vertices in Y.

If $\theta(D)<1 / 3$, then the proof uses a probabilistic argument

Let $\bar{p}=\frac{\theta}{2(1-2 \theta)}$ and place any vertex with $w^{+}(x)>w^{-}(x)$ in X with probability $(1 / 2+\bar{p})$.

Any vertex with $w^{+}(x) \leq w^{-}(x)$ we place in Y with probability $(1 / 2+\bar{p})$.

We then look at the average weight of the (X, Y)-cut.

Theorem 2 is tight

To show the bound is tight we let D_{k} be a digraph consisting of two vertex disjoint regular tournament, A_{k} and B_{k}, of order k and arc-weights 1.

We then add all arcs from A_{k} to B_{k} with weight $Q=\frac{\theta(1-1 / k)}{1-\theta}$

$\operatorname{mac}\left(D_{k}\right)=Q x y+x(k-x) / 2+y(k-y) / 2$, where

Theorem 2 is tight

To show the bound is tight we let D_{k} be a digraph consisting of two vertex disjoint regular tournament, A_{k} and B_{k}, of order k and arc-weights 1 .

We then add all arcs from A_{k} to B_{k} with weight $Q=\frac{\theta(1-1 / k)}{1-\theta}$.

$A_{k}$$\begin{gathered}\text { regular } \\ \text { tounnament } \\ \text { weights=1 }\end{gathered}$	Weights = Q	B_{k} regular
	$=\frac{\theta(1-1 / k}{1-\theta}$	tournament Weights=1

$$
\begin{aligned}
& \theta\left(D_{k}\right)=Q k^{2} /\left(k^{2}-k+Q k^{2}\right)=Q /(1+Q-1 / k)=\theta . \\
& \operatorname{mac}\left(D_{k}\right)=Q x y+x(k-x) / 2+y(k-y) / 2, \text { where } \\
& x=\left|V\left(A_{k}\right) \cap X\right| \text { and } y=\left|V\left(B_{k}\right) \cap Y\right| \text { for optimal }(X, Y) .
\end{aligned}
$$

Acyclic digraphs

For (unweighted) acyclic digraphs. Alon et. al. proved the following
Theorem 3 (Alon et al): There exists a constant k_{1}^{s}, such that for every integer $m \geq 1$ there exists an acyclic digraph D_{m}^{s} with m arcs and $\operatorname{mac}\left(D_{m}^{s}\right) \leq \frac{m}{4}+k_{1}^{s} m^{0.8}$.
Theorem 4 (Alon et al): There exists a constant k_{2}^{s}, such that $\operatorname{mac}(D) \geq \frac{m}{4}+k_{2}^{s} m^{0.6}$ for all acyclic digraphs D of size m.

We generalize to multi-digraphs and arc-weighted digraphs.
Theorem 5, [1]: There exists a constant k_{1}, such that for every integer $m \geq 1$ there exists an acyclic multi-digraph D_{m} with m arcs and $\operatorname{mac}\left(D_{m}\right) \leq \frac{m}{4}+k_{1} m^{0.75}$ Theorem 6, [1]: There exists a constant k_{2}, such that $\operatorname{mac}(D) \geq \frac{w(D)}{4}+k_{2} w(D)^{0.6}$ for all acyclic arc-weighted digraphs D with $w \geq 1$.

Acyclic digraphs

For (unweighted) acyclic digraphs. Alon et. al. proved the following

Theorem 3 (Alon et al): There exists a constant k_{1}^{s}, such that for every integer $m \geq 1$ there exists an acyclic digraph D_{m}^{s} with m arcs and $\operatorname{mac}\left(D_{m}^{s}\right) \leq \frac{m}{4}+k_{1}^{s} m^{0.8}$.
Theorem 4 (Alon et al): There exists a constant k_{2}^{s}, such that $\operatorname{mac}(D) \geq \frac{m}{4}+k_{2}^{s} m^{0.6}$ for all acyclic digraphs D of size m.

We generalize to multi-digraphs and arc-weighted digraphs.
Theorem 5, [1]: There exists a constant k_{1}, such that for every integer $m \geq 1$ there exists an acyclic multi-digraph D_{m} with m arcs and $\operatorname{mac}\left(D_{m}\right) \leq \frac{m}{4}+k_{1} m^{0.75}$.
Theorem 6, [1]: There exists a constant k_{2}, such that $\operatorname{mac}(D) \geq \frac{w(D)}{4}+k_{2} w(D)^{0.6}$ for all acyclic arc-weighted digraphs D with $w \geq 1$.

Acyclic digraphs

> Theorem 5 and 6 hold for both multi-digraphs and arcweighted digraphs ($w \geq 1$).

Theorem 5: There exists acyclic multi-digraphs: $\operatorname{mac}\left(D_{m}\right) \leq \frac{m}{4}+k_{1} m^{0.75}$.
Theorem 6: For all acyclic arc-weighted digraphs
$(w \geq 1): \quad \operatorname{mac}(D) \geq \frac{w(D)}{4}+k_{2} w(D)^{0.6}$.

Why do we need $w \geq 1$? Otherwise Theorem 6 is not true (consider a digraph with one arc of weight q such that $q<k_{2}^{2.5}$ which implies that $\left.k_{2} w(D)^{0.6}=k_{2} q^{0.6}>q=w(D)=\operatorname{mac}(D)\right)$

We first outline the proof of Theorem 5

Let $V(D)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and add an acyclic tournament on $l_{i}=\left(v_{i}, v_{i+1}, \ldots, v_{i+q-1}\right)$ where all arcs go "forward" in the order of I_{i} and all indices are taken modulo n.

This gives us a regular multi-digraph (where n and q will be decided later).

Acyclic digraphs

> Theorem 5 and 6 hold for both multi-digraphs and arcweighted digraphs ($w \geq 1$).

Theorem 5: There exists acyclic multi-digraphs: $\operatorname{mac}\left(D_{m}\right) \leq \frac{m}{4}+k_{1} m^{0.75}$.
Theorem 6: For all acyclic arc-weighted digraphs $(w \geq 1): \quad \operatorname{mac}(D) \geq \frac{w(D)}{4}+k_{2} w(D)^{0.6}$.

Why do we need $w \geq 1$? Otherwise Theorem 6 is not true (consider a digraph with one arc of weight q such that $q<k_{2}^{2.5}$ which implies that $\left.k_{2} w(D)^{0.6}=k_{2} q^{0.6}>q=w(D)=\operatorname{mac}(D)\right)$

We first outline the proof of Theorem 5

Let $V(D)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and add an acyclic tournament on $I_{i}=\left(v_{i}, v_{i+1}, \ldots, v_{i+q-1}\right)$ where all arcs go "forward" in the order of I_{i} and all indices are taken modulo n.

This gives us a regular multi-digraph (where n and q will be decided later).

Acyclic digraphs

Theorem 5 and 6 hold for both multi-digraphs and arcweighted digraphs ($w \geq 1$).

$$
\begin{aligned}
& \text { Theorem 5: There exists acyclic multi-digraphs: } \\
& \operatorname{mac}\left(D_{m}\right) \leq \frac{m}{4}+k_{1} m^{0.75} \text {. } \\
& \text { Theorem 6: For all acyclic arc-weighted digraphs } \\
& (w \geq 1): \quad \operatorname{mac}(D) \geq \frac{w(D)}{4}+k_{2} w(D)^{0.6}
\end{aligned}
$$

Why do we need $w \geq 1$? Otherwise Theorem 6 is not true (consider a digraph with one arc of weight q such that $q<k_{2}^{2.5}$ which implies that $\left.k_{2} w(D)^{0.6}=k_{2} q^{0.6}>q=w(D)=\operatorname{mac}(D)\right)$

We first outline the proof of Theorem 5.

Acyclic digraphs

Theorem 5 and 6 hold for both multi-digraphs and arcweighted digraphs ($w \geq 1$).

Theorem 5: There exists acyclic multi-digraphs: $\operatorname{mac}\left(D_{m}\right) \leq \frac{m}{4}+k_{1} m^{0.75}$.
Theorem 6: For all acyclic arc-weighted digraphs
$(w \geq 1): \quad \operatorname{mac}(D) \geq \frac{w(D)}{4}+k_{2} w(D)^{0.6}$.

Why do we need $w \geq 1$? Otherwise Theorem 6 is not true (consider a digraph with one arc of weight q such that $q<k_{2}^{2.5}$ which implies that $\left.k_{2} w(D)^{0.6}=k_{2} q^{0.6}>q=w(D)=\operatorname{mac}(D)\right)$

We first outline the proof of Theorem 5.
Let $V(D)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and add an acyclic tournament on $I_{i}=\left(v_{i}, v_{i+1}, \ldots, v_{i+q-1}\right)$ where all arcs go "forward" in the order of I_{i} and all indices are taken modulo n.

This gives us a regular multi-digraph (where n and q will be decided later).

Theorem 5

(11) (12) (173) (14) (15) (16) (17)
The result we call D_{m}^{*}, which is a regular multi-digraph.
We now delete all "backward" arcs and call the result D_{m}.
As $A\left(D_{m}^{*}\right)$ can be partitioned into n tournaments on q vertices we
note that $\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right) \leq n \cdot \operatorname{mac}\left(K_{q}\right)=n \cdot\left|\frac{q^{2}}{4}\right| \leq \frac{n q^{2}}{4}$.
So, $\operatorname{mac}\left(D_{m}\right) \leq \operatorname{mac}\left(D_{m}^{*}\right)=\frac{\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right)}{2} \leq \frac{n q^{2}}{8}$.

Theorem 5

(15) (16) (17)

The result we call D_{m}^{*}, which is a regular multi-digraph.

We now delete all "backward" arcs and call the result D_{m}.

As $A\left(D_{m}^{*}\right)$ can be partitioned into n tournaments on q vertices we
note that $\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right) \leq n \cdot \operatorname{mac}\left(K_{q}\right)=n \cdot\left|\frac{q^{2}}{4}\right| \leq \frac{n q^{2}}{4}$.

So, $\operatorname{mac}\left(D_{m}\right) \leq \operatorname{mac}\left(D_{m}^{*}\right)=\frac{\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right)}{2} \leq \frac{n q^{2}}{8}$.

Theorem 5

（v6）
（17）

The result we call D_{m}^{*} ，which is a regular multi－digraph．

We now delete all＂backward＂arcs and call the result D_{m} ．

As $A\left(D_{m}^{*}\right)$ can be partitioned into n tournaments on q vertices we note that $\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right) \leq n \cdot \operatorname{mac}\left(K_{q}\right)=n \cdot\left|\frac{q^{2}}{4}\right| \leq \frac{n q^{2}}{4}$ ．

So， $\operatorname{mac}\left(D_{m}\right) \leq \operatorname{mac}\left(D_{m}^{*}\right)=\frac{\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right)}{2} \leq \frac{n q^{2}}{8}$ ．

Theorem 5

(1ㅡ)
(12)

(17)

The result we call D_{m}^{*}, which is a regular multi-digraph.

We now delete all "backward" arcs and call the result D_{m}.

As $A\left(D_{m}^{*}\right)$ can be partitioned into n tournaments on q vertices we
note that $\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right) \leq n \cdot \operatorname{mac}\left(K_{q}\right)=n \cdot\left|\frac{q^{2}}{4}\right| \leq \frac{n q^{2}}{4}$.

So, $\operatorname{mac}\left(D_{m}\right) \leq \operatorname{mac}\left(D_{m}^{*}\right)=\frac{\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right)}{2} \leq \frac{n q^{2}}{8}$.

Theorem 5

(12)
(는)

The result we call D_{m}^{*}, which is a regular multi-digraph.

We now delete all "backward" arcs and call the result D_{m}.

As $A\left(D_{m}^{*}\right)$ can be partitioned into n tournaments on q vertices we
note that $\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right) \leq n \cdot \operatorname{mac}\left(K_{q}\right)=n \cdot\left\lfloor\frac{q^{2}}{4}\right\rfloor \leq \frac{n q^{2}}{4}$.

So, $\operatorname{mac}\left(D_{m}\right) \leq \operatorname{mac}\left(D_{m}^{*}\right)=\frac{\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right)}{2} \leq \frac{n q^{2}}{8}$.

Theorem 5

The result we call D_{m}^{*}, which is a regular multi-digraph.
We now delete all "backward" arcs and call the result D_{m}.
As $A\left(D_{m}^{*}\right)$ can be partitioned into n tournaments on q vertices we
note that $\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right) \leq n \cdot \operatorname{mac}\left(K_{a}\right)=n \cdot\left|\frac{q^{2}}{4}\right| \leq \frac{n q^{2}}{4}$.
So, $\operatorname{mac}\left(D_{m}\right) \leq \operatorname{mac}\left(D_{m}^{*}\right)=\frac{\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right)}{2} \leq \frac{n q^{2}}{8}$.

The result we call D_{m}^{*}, which is a regular multi-digraph.
We now delete all "backward" arcs and call the result D_{m}.
As $A\left(D_{m}^{*}\right)$ can be partitioned into n tournaments on q vertices we
note that $\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right) \leq n \cdot \operatorname{mac}\left(K_{q}\right)=n \cdot\left\lfloor\frac{q^{2}}{4}\right\rfloor \leq \frac{n q^{2}}{4}$.
So, $\operatorname{mac}\left(D_{m}\right) \leq \operatorname{mac}\left(D_{m}^{*}\right)=\frac{\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right)}{2} \leq \frac{n q^{2}}{8}$.

Theorem 5

The result we call D_{m}^{*}, which is a regular multi-digraph.
We now delete all "backward" arcs and call the result D_{m}.
As $A\left(D_{m}^{*}\right)$ can be partitioned into n tournaments on q vertices we
note that $\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right) \leq n \cdot \operatorname{mac}\left(K_{q}\right)=n \cdot\left|\frac{q^{2}}{4}\right| \leq \frac{n q^{2}}{4}$.
So, $\operatorname{mac}\left(D_{m}\right) \leq \operatorname{mac}\left(D_{m}^{*}\right)=\frac{\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right)}{2} \leq \frac{n q^{2}}{8}$.

$$
\begin{aligned}
& \text { red } \Rightarrow w=3 \\
& \text { green } \Rightarrow w=2 \\
& \text { blue } \Rightarrow w=1
\end{aligned}
$$

The result we call D_{m}^{*}, which is a regular multi-digraph.
We now delete all "backward" arcs and call the result D_{m}.
As $A\left(D_{m}^{*}\right)$ can be partitioned into n tournaments on q vertices we
note that $\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right) \leq n \cdot \operatorname{mac}\left(K_{q}\right)=n \cdot\left\lfloor\frac{q^{2}}{4}\right\rfloor \leq \frac{n q^{2}}{4}$
So, $\operatorname{mac}\left(D_{m}\right) \leq \operatorname{mac}\left(D_{m}^{*}\right)=\frac{\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right)}{2} \leq \frac{n q^{2}}{8}$.

$$
\begin{aligned}
& \text { red } \Rightarrow w=3 \\
& \text { green } \Rightarrow w=2 \\
& \text { blue } \Rightarrow w=1
\end{aligned}
$$

The result we call D_{m}^{*}, which is a regular multi-digraph.
We now delete all "backward" arcs and call the result D_{m}.

As $A\left(D_{m}^{*}\right)$ can be partitioned into n tournaments on q vertices we
note that $\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right) \leq n \cdot \operatorname{mac}\left(K_{q}\right)=n \cdot\left|\frac{q^{2}}{4}\right| \leq \frac{n q^{2}}{4}$

So, $\operatorname{mac}\left(D_{m}\right) \leq \operatorname{mac}\left(D_{m}^{*}\right)=\frac{\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right)}{2} \leq \frac{n q^{2}}{8}$.

$$
\begin{aligned}
& \text { red } \Rightarrow w=3 \\
& \text { green } \Rightarrow w=2 \\
& \text { blue } \Rightarrow w=1
\end{aligned}
$$

The result we call D_{m}^{*}, which is a regular multi-digraph.
We now delete all "backward" arcs and call the result D_{m}.
As $A\left(D_{m}^{*}\right)$ can be partitioned into n tournaments on q vertices we note that $\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right) \leq n \cdot \operatorname{mac}\left(K_{q}\right)=n \cdot\left\lfloor\frac{q^{2}}{4}\right\rfloor \leq \frac{n q^{2}}{4}$.

So, $\operatorname{mac}\left(D_{m}\right) \leq \operatorname{mac}\left(D_{m}^{*}\right)=\frac{\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right)}{2} \leq \frac{n q^{2}}{8}$.

$$
\begin{aligned}
& \text { red } \Rightarrow w=3 \\
& \text { green } \Rightarrow w=2 \\
& \text { blue } \Rightarrow w=1
\end{aligned}
$$

The result we call D_{m}^{*}, which is a regular multi-digraph.
We now delete all "backward" arcs and call the result D_{m}.
As $A\left(D_{m}^{*}\right)$ can be partitioned into n tournaments on q vertices we note that $\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right) \leq n \cdot \operatorname{mac}\left(K_{q}\right)=n \cdot\left\lfloor\frac{q^{2}}{4}\right\rfloor \leq \frac{n q^{2}}{4}$.

So, $\operatorname{mac}\left(D_{m}\right) \leq \operatorname{mac}\left(D_{m}^{*}\right)=\frac{\operatorname{mac}\left(U G\left(D_{m}^{*}\right)\right)}{2} \leq \frac{n q^{2}}{8}$.

Theorem 5
Example
$n=7$ and $q=4$:

$$
\operatorname{mac}\left(D_{m}\right) \leq \frac{n q^{2}}{8}
$$

$$
\begin{aligned}
\left|A\left(D_{m}\right)\right| & =\left|A\left(D_{m}^{*}\right)\right|-1 \cdot(q-1)-2 \cdot(q-2)-\cdots(q-1) \cdot 1 \\
& =n\binom{q}{2}-\sum_{i=1}^{q-1} i(q-i) \\
& =\frac{n q(q-1)}{2}-q \sum_{i=1}^{q-1} i+\sum_{i=1}^{q-1} i^{2} \\
& =\ldots=\frac{n q^{2}}{2}-\frac{n q}{2}-\frac{q^{3}}{6}+\frac{q}{6}
\end{aligned}
$$

Letting $q=\lfloor\sqrt{n}\rfloor$ and optimizing we get

Theorem 5
Example
$n=7$ and $q=4$:

$$
\operatorname{mac}\left(D_{m}\right) \leq \frac{n q^{2}}{8}
$$

$$
\begin{aligned}
\left|A\left(D_{m}\right)\right| & =\left|A\left(D_{m}^{*}\right)\right|-1 \cdot(q-1)-2 \cdot(q-2)-\cdots(q-1) \cdot 1 \\
& =n\binom{q}{2}-\sum_{i=1}^{q-1} i(q-i) \\
& =\frac{n q(q-1)}{2}-q \sum_{i=1}^{q-1} i+\sum_{i=1}^{q-1} i^{2} \\
& =\ldots=\frac{n q^{2}}{2}-\frac{n q}{2}-\frac{q^{3}}{6}+\frac{q}{6}
\end{aligned}
$$

Letting $q=\lfloor\sqrt{n}\rfloor$ and optimizing we get

$$
\begin{aligned}
\operatorname{mac}\left(D_{m}\right) & \leq \frac{n q^{2}}{8}=\frac{\left|A\left(D_{m}\right)\right|}{4}+\frac{3 n q+q^{3}-q}{24} \\
& \leq \frac{\left|A\left(D_{m}\right)\right|}{4}+\left|A\left(D_{m}\right)\right|^{0.75} \times \frac{7.75}{24\left(\frac{1}{6}\right)^{0.75}}
\end{aligned}
$$

One can then extend this to all values of m.

Theorem 5
Example
$n=7$ and $q=4$:

$$
\operatorname{mac}\left(D_{m}\right) \leq \frac{n q^{2}}{8}
$$

$$
\begin{aligned}
\left|A\left(D_{m}\right)\right| & =\left|A\left(D_{m}^{*}\right)\right|-1 \cdot(q-1)-2 \cdot(q-2)-\cdots(q-1) \cdot 1 \\
& =n\binom{q}{2}-\sum_{i=1}^{q-1} i(q-i) \\
& =\frac{n q(q-1)}{2}-q \sum_{i=1}^{q-1} i+\sum_{i=1}^{q-1} i^{2} \\
& =\ldots=\frac{n q^{2}}{2}-\frac{n q}{2}-\frac{q^{3}}{6}+\frac{q}{6}
\end{aligned}
$$

Letting $q=\lfloor\sqrt{n}\rfloor$ and optimizing we get

$$
\begin{aligned}
\operatorname{mac}\left(D_{m}\right) & \leq \frac{n q^{2}}{8}=\frac{\left|A\left(D_{m}\right)\right|}{4}+\frac{3 n q+q^{3}-q}{24} \\
& \leq \frac{\left|A\left(D_{m}\right)\right|}{4}+\left|A\left(D_{m}\right)\right|^{0.75} \times \frac{7.75}{24\left(\frac{1}{6}\right)^{0.75}}
\end{aligned}
$$

One can then extend this to all values of $m \ldots$...

Theorem 6

Recall Theorem 6, which we shall now give the main ideas for.
Theorem 6, [1]: There exists a constant k_{2}, such that $\operatorname{mac}(D) \geq \frac{w(D)}{4}+k_{2} w(D)^{0.6}$ for all arc-weighted acyclic digraphs $D(w \geq 1)$.

In order to prove this we need a result on arc-weighted acyclic digraphs with maximum path contiaining ν vertices.

Let c_{ν} be the largest number such that $\operatorname{mac}(D) \geq c_{\nu} \times w(D)$ for all arc-weighted acyclic digraphs D with maximum path order at most ν

Proving Theorem 7 is the main part in proving Theorem 6
We can show that $c_{2}=1, c_{3}=c_{4}=\frac{1}{2}, c_{5}=c_{6}=\frac{2}{5}, c_{7}=\frac{3}{8}$

Recall Theorem 6, which we shall now give the main ideas for.
Theorem 6, [1]: There exists a constant k_{2}, such that $\operatorname{mac}(D) \geq \frac{w(D)}{4}+k_{2} w(D)^{0.6}$ for all arc-weighted acyclic digraphs $D(w \geq 1)$.

In order to prove this we need a result on arc-weighted acyclic digraphs with maximum path contiaining ν vertices.

Recall Theorem 6, which we shall now give the main ideas for.
Theorem 6, [1]: There exists a constant k_{2}, such that $\operatorname{mac}(D) \geq \frac{w(D)}{4}+k_{2} w(D)^{0.6}$ for all arc-weighted acyclic digraphs $D(w \geq 1)$.

In order to prove this we need a result on arc-weighted acyclic digraphs with maximum path contiaining ν vertices.

Let c_{ν} be the largest number such that $\operatorname{mac}(D) \geq c_{\nu} \times w(D)$ for all arc-weighted acyclic digraphs D with maximum path order at most ν.

Theorem 7, [1]: $c_{\nu} \geq \frac{1}{4}+\frac{1}{8 \times 3^{2 / 3} \times \nu^{2 / 3}}$.
Proving Theorem 7 is the main part in proving Theorem 6 .

Recall Theorem 6, which we shall now give the main ideas for.
Theorem 6, [1]: There exists a constant k_{2}, such that $\operatorname{mac}(D) \geq \frac{w(D)}{4}+k_{2} w(D)^{0.6}$ for all arc-weighted acyclic digraphs $D(w \geq 1)$.

In order to prove this we need a result on arc-weighted acyclic digraphs with maximum path contiaining ν vertices.

Let c_{ν} be the largest number such that $\operatorname{mac}(D) \geq c_{\nu} \times w(D)$ for all arc-weighted acyclic digraphs D with maximum path order at most ν.

Theorem 7, [1]: $c_{\nu} \geq \frac{1}{4}+\frac{1}{8 \times 3^{2 / 3} \times \nu^{2 / 3}}$.
Proving Theorem 7 is the main part in proving Theorem 6.
We can show that $c_{2}=1, c_{3}=c_{4}=\frac{1}{2}, c_{5}=c_{6}=\frac{2}{5}, c_{7}=\frac{3}{8}$, $c_{8}=\frac{4}{11}, c_{9}=\frac{13}{37}, c_{10}=\frac{9}{26}$ and $c_{11}=\frac{31}{92}$.

Let D be an arc-weighted acyclic digraph with maximum path order ν.

$$
\text { Theorem 7: } c_{\nu} \geq \frac{1}{4}+\frac{1}{8 \times 3^{2 / 3} \times \nu^{2 / 3}}
$$

There exists independent sets $S_{1}, S_{2}, \ldots, S_{\nu}$ such that all arcs in D are $\left(S_{i}, S_{j}\right)$-arcs with $i<j$

We contract each S_{i} into a vertex v_{i}, which gives us an acyclic digraph D^{\prime} with $V\left(D^{\prime}\right)=\left\{v_{1}, v_{2}, \ldots, v_{\nu}\right\}$

We then (for some k) partition the vertices into sets

Let D be an arc-weighted acyclic digraph with maximum path order ν.

```
Theorem 7: c\nu}\geq\frac{1}{4}+\frac{1}{8\times\mp@subsup{3}{}{2/3}\times\mp@subsup{\nu}{}{2/3}
```

There exists independent sets $S_{1}, S_{2}, \ldots, S_{\nu}$ such that all arcs in D are $\left(S_{i}, S_{j}\right)$-arcs with $i<j$.

We contract each S_{i} into a vertex v_{i}, which gives us an acyclic digraph D^{\prime} with $V\left(D^{\prime}\right)=\left\{v_{1}, v_{2}, \ldots, v_{\nu}\right\}$

We then (for some k) partition the vertices into sets

Let D be an arc-weighted acyclic digraph with maximum path order ν.

```
Theorem 7: c\nu }\geq\frac{1}{4}+\frac{1}{8\times\mp@subsup{3}{}{2/3}\times\mp@subsup{\nu}{}{2/3}}\mathrm{ .
```

There exists independent sets $S_{1}, S_{2}, \ldots, S_{\nu}$ such that all arcs in D are $\left(S_{i}, S_{j}\right)$-arcs with $i<j$.

We contract each S_{i} into a vertex v_{i}, which gives us an acyclic digraph D^{\prime} with $V\left(D^{\prime}\right)=\left\{v_{1}, v_{2}, \ldots, v_{\nu}\right\}$.

We then (for some k) partition the vertices into sets

Let D be an arc-weighted acyclic digraph with maximum path order ν.

```
Theorem 7: c}\mp@subsup{c}{\nu}{}\geq\frac{1}{4}+\frac{1}{8\times\mp@subsup{3}{}{2/3}\times\mp@subsup{\nu}{}{2/3}}
```

There exists independent sets $S_{1}, S_{2}, \ldots, S_{\nu}$ such that all arcs in D are $\left(S_{i}, S_{j}\right)$-arcs with $i<j$.

We contract each S_{i} into a vertex v_{i}, which gives us an acyclic digraph D^{\prime} with $V\left(D^{\prime}\right)=\left\{v_{1}, v_{2}, \ldots, v_{\nu}\right\}$.

We then (for some k) partition the vertices into sets $A_{-z}, A_{-z+1}, \ldots, A_{-1}, A_{0}, A_{1}, \ldots, A_{z}(z \approx \sqrt{k / 2})$, such that $\left|A_{i}\right| \approx 2 k-2 i^{2}$ for all $i \in\{-z,-z+1, \ldots, z\}$.

The above picture illustrates $A_{-z}, A_{-z+1}, \ldots, A_{-1}, A_{0}, A_{1}, \ldots, A_{z}$.
We randomly place $\frac{\left|A_{i}\right|-i}{2}$ vertices from A_{i} in X and $\frac{\left|A_{i}\right|+i}{2}$ vertices from A_{i} in Y.

Every arc in D^{\prime} lies in the cut (X, Y) with probability at least $\frac{k}{4 k-2}$. Why?

The above picture illustrates $A_{-z}, A_{-z+1}, \ldots, A_{-1}, A_{0}, A_{1}, \ldots, A_{z}$.
We randomly place $\frac{\left|A_{i}\right|-i}{2}$ vertices from A_{i} in X and $\frac{\left|A_{i}\right|+i}{2}$ vertices from A_{i} in Y.

Every arc in D^{\prime} lies in the cut (X, Y) with probability at least

The above picture illustrates $A_{-z}, A_{-z+1}, \ldots, A_{-1}, A_{0}, A_{1}, \ldots, A_{z}$.
We randomly place $\frac{\left|A_{i}\right|-i}{2}$ vertices from A_{i} in X and $\frac{\left|A_{i}\right|+i}{2}$ vertices from A_{i} in Y.

Every arc in D^{\prime} lies in the cut (X, Y) with probability at least $\frac{k}{4 k-2}$. Why?

If a is an arc within A_{i}, then To show: $P(a \in(X, Y)) \geq \frac{k}{4 k-2}$

$$
P(a \in(X, Y)) \geq \frac{\left|A_{i}\right|-i}{2\left|A_{i}\right|} \times \frac{\left|A_{i}\right|+i}{2\left(\left|A_{i}\right|-1\right)}=\frac{\left|A_{i}\right|^{2}-i^{2}}{4\left|A_{i}\right|\left(\left|A_{i}\right|-1\right)}
$$

E.g. $\left|A_{1}\right|=2 k-2$ implies that

Analogously, one can show that all arcs within sets A_{i} satisfy the condition. One can then show that it also holds for arcs between sets.

If a is an arc within A_{i}, then

$$
\text { To show: } P(a \in(X, Y)) \geq \frac{k}{4 k-2}
$$

$P(a \in(X, Y)) \geq \frac{\left|A_{i}\right|-i}{2\left|A_{i}\right|} \times \frac{\left|A_{i}\right|+i}{2\left(\left|A_{i}\right|-1\right)}=\frac{\left|A_{i}\right|^{2}-i^{2}}{4\left|A_{i}\right|\left(\left|A_{i}\right|-1\right)}$
E.g. $\left|A_{0}\right|=2 k$ implies that $P(a \in(X, Y)) \geq \frac{(2 k)^{2}}{4 \cdot 2 k(2 k-1)}=\frac{k}{4 k-2}$.
E.g. $\left|A_{1}\right|=2 k-2$ implies that
$P(a \in(X, Y)) \geq \frac{(2 k-2)^{2}-1}{4 \cdot(2 k-2)(2 k-3)}>\frac{k}{4 k-2}($ when $k \geq 2)$
Analogously, one can show that all arcs within sets A_{i} satisfy the condition. One can then show that it also holds for arcs between sets.

If a is an arc within A_{i}, then

$$
\text { To show: } P(a \in(X, Y)) \geq \frac{k}{4 k-2}
$$

$P(a \in(X, Y)) \geq \frac{\left|A_{i}\right|-i}{2\left|A_{i}\right|} \times \frac{\left|A_{i}\right|+i}{2\left(\left|A_{i}\right|-1\right)}=\frac{\left|A_{i}\right|^{2}-i^{2}}{4\left|A_{i}\right|\left(\left|A_{i}\right|-1\right)}$
E.g. $\left|A_{0}\right|=2 k$ implies that $P(a \in(X, Y)) \geq \frac{(2 k)^{2}}{4 \cdot 2 k(2 k-1)}=\frac{k}{4 k-2}$.
E.g. $\left|A_{1}\right|=2 k-2$ implies that
$P(a \in(X, Y)) \geq \frac{(2 k-2)^{2}-1}{4 \cdot(2 k-2)(2 k-3)}>\frac{k}{4 k-2}($ when $k \geq 2)$.
Analogously, one can show that all arcs within sets A_{i} satisfy the condition. One can then show that it also holds for arcs between sets.

If a is an arc within A_{i}, then

```
To show:}P(a\in(X,Y))\geq\frac{k}{4k-2
```

$P(a \in(X, Y)) \geq \frac{\left|A_{i}\right|-i}{2\left|A_{i}\right|} \times \frac{\left|A_{i}\right|+i}{2\left(\left|A_{i}\right|-1\right)}=\frac{\left|A_{i}\right|^{2}-i^{2}}{4\left|A_{i}\right|\left(\left|A_{i}\right|-1\right)}$
E.g. $\left|A_{0}\right|=2 k$ implies that $P(a \in(X, Y)) \geq \frac{(2 k)^{2}}{4 \cdot 2 k(2 k-1)}=\frac{k}{4 k-2}$.
E.g. $\left|A_{1}\right|=2 k-2$ implies that
$P(a \in(X, Y)) \geq \frac{(2 k-2)^{2}-1}{4 \cdot(2 k-2)(2 k-3)}>\frac{k}{4 k-2}($ when $k \geq 2)$.

Analogously, one can show that all arcs within sets A_{i} satisfy the condition. One can then show that it also holds for arcs between sets.

One can also show that $\nu \geq k^{3 / 2}$. So,

$$
\begin{aligned}
\operatorname{mac}(D) & \geq \frac{k}{4 k-2} \times w(D) \\
& =\left(\frac{1}{4}+\frac{1}{8 k-4}\right) w(D) \\
& \geq\left(\frac{1}{4}+\frac{1}{8 \nu^{2 / 3}-4}\right) w(D)
\end{aligned}
$$

In Theorem 7 we show $\operatorname{mac}(D) \geq\left(\frac{1}{4}+\frac{1}{8 \times 3^{2 / 3} \times \nu^{2 / 3}}\right) w(D)$, which is because we need the bound to hold for all ν, not just the ones we consider above.

One can also show that $\nu \geq k^{3 / 2}$. So,

$$
\begin{aligned}
\operatorname{mac}(D) & \geq \frac{k}{4 k-2} \times w(D) \\
& =\left(\frac{1}{4}+\frac{1}{8 k-4}\right) w(D) \\
& \geq\left(\frac{1}{4}+\frac{1}{8 \nu^{2 / 3}-4}\right) w(D)
\end{aligned}
$$

In Theorem 7 we show $\operatorname{mac}(D) \geq\left(\frac{1}{4}+\frac{1}{8 \times 3^{2 / 3} \times \nu^{2 / 3}}\right) w(D)$, which is because we need the bound to hold for all ν, not just the ones we consider above.

Theorem 6: There exists a constant k_{2}, such that $\operatorname{mac}(D) \geq \frac{w(D)}{4}+k_{2} w(D)^{0.6}$ for all arcweighted acyclic digraphs $D(w \geq 1)$.

Theorem 7:

$$
c_{\nu} \geq \frac{1}{4}+\frac{1}{8 \times 3^{2 / 3} \times \nu^{2 / 3}} .
$$

Proof: Let D be a arc-weighted acyclic digraphs D

Let $P=p_{1} p_{2} p_{3} \ldots p_{n}$ be a longest path in D.

We consider the cases when $w(P) \leq w(D)^{0.6}$ and $w(P) \geq w(D)^{0.6}$ seperately.

Theorem 6: There exists a constant k_{2}, such that $\operatorname{mac}(D) \geq \frac{w(D)}{4}+k_{2} w(D)^{0.6}$ for all arcweighted acyclic digraphs $D(w \geq 1)$.

Theorem 7:

$$
c_{\nu} \geq \frac{1}{4}+\frac{1}{8 \times 3^{2 / 3} \times \nu^{2 / 3}}
$$

Proof: Let D be a arc-weighted acyclic digraphs D.

Let $P=p_{1} p_{2} p_{3} \ldots p_{n}$ be a longest path in D.

We consider the cases when $w(P) \leq w(D)^{0.6}$ and $w(P) \geq w(D)^{0.6}$ seperately.

Theorem 6, Case 1 proof

Case 1: $w(P) \leq w(D)^{0.6}$.

As all weights are at least one, we have $|A(P)| \leq w(P) \leq w(D)^{0.6}$. So Theorem 7 implies,

$$
\begin{aligned}
\operatorname{mac}(D) & \geq\left(\frac{1}{4}+\frac{1}{\left.8 \times 3^{2 / 3} \times \mid A(P)\right)^{2 / 3}}\right) w(D) \\
& \geq \frac{w(D)}{4}+\frac{w(D)}{8 \times 3^{2 / 3} \times w(D)^{0.4}} \\
& \geq \frac{w(D)}{4}+k_{2} \cdot w(D)^{0.6}
\end{aligned}
$$

Theorem 6, Case 2 proof

Case 2: $w(P) \geq w(D)^{0.6}$.
Let M_{1} and M_{2} be two matchings in $A(P)$ such that $A\left(M_{1}\right) \cup A\left(M_{2}\right)=A(P)$.
W.l.o.g assume that $w\left(M_{1}\right) \geq w\left(M_{2}\right)$, and for each arc, $u v$, in M_{1} assign u to X and v to Y with probability $1 / 2$ and assign u to Y and v to X with probability $1 / 2$. Any vertex not in $V\left(M_{1}\right)$ gets assigned to X or Y with probability $1 / 2$.

The average weight of the cut (X, Y) is the following.

Theorem 6, Case 2 proof

Case 2: $w(P) \geq w(D)^{0.6}$.
Let M_{1} and M_{2} be two matchings in $A(P)$ such that $A\left(M_{1}\right) \cup A\left(M_{2}\right)=A(P)$.
W.I.o.g assume that $w\left(M_{1}\right) \geq w\left(M_{2}\right)$, and for each arc, $u v$, in M_{1} assign u to X and v to Y with probability $1 / 2$ and assign u to Y and v to X with probability $1 / 2$. Any vertex not in $V\left(M_{1}\right)$ gets assigned to X or Y with probability $1 / 2$.

The average weight of the cut (X, Y) is the following.

Theorem 6, Case 2 proof

Case 2: $w(P) \geq w(D)^{0.6}$.
Let M_{1} and M_{2} be two matchings in $A(P)$ such that $A\left(M_{1}\right) \cup A\left(M_{2}\right)=A(P)$.
W.l.o.g assume that $w\left(M_{1}\right) \geq w\left(M_{2}\right)$, and for each arc, $u v$, in M_{1} assign u to X and v to Y with probability $1 / 2$ and assign u to Y and v to X with probability $1 / 2$. Any vertex not in $V\left(M_{1}\right)$ gets assigned to X or Y with probability $1 / 2$.

The average weight of the cut (X, Y) is the following.

$$
\frac{w(D)}{4}+\frac{w\left(M_{1}\right)}{4} \geq \frac{w(D)}{4}+\frac{w(P) / 2}{4} \geq \frac{w(D)}{4}+\frac{w(D)^{0.6}}{8}
$$

Open problem

Theorem 5, [1]: There exists a constant k_{1}, such that for every integer $m \geq 1$ there exists an acyclic multi-digraph D_{m} with m arcs and $\operatorname{mac}\left(D_{m}\right) \leq \frac{m}{4}+k_{1} m^{0.75}$.

Theorem 6, [1]: There exists a constant k_{2}, such that $\operatorname{mac}(D) \geq \frac{w(D)}{4}+k_{2} w(D)^{0.6}$ for all arc-weighted acyclic digraphs $D(w \geq 1)$.

Open Problem: Close the gap between 0.6 and 0.75 for arc-weighted acyclic digraphs D.

Small cycles

Let $\operatorname{circ}(D)$ denote the circumference of a digraph D (i.e. the length of a longest cycle in D). Assume all weights are at least 1 .

Theorem 8, [1]: Assume that there exist constants $k>0$ and $0<\alpha<1$ such that $\operatorname{mac}(H) \geq \frac{w(H)}{4}+k w(H)^{\alpha}$ for all acyclic digraphs H. If D is an arbitrary arc-weighted digraph then,

$$
\operatorname{mac}(D) \geq \frac{w(D)}{4}+\frac{k}{(4 k+1) \cdot \operatorname{circ}(D)+1} \times w(D)^{\alpha}
$$

The proof of Theorem 8 uses the following theorem.
Theorem 9 (Bondy, 1976): For all strong digraphs D we have $\chi(D) \leq \operatorname{circ}(D)$.

So, any result holding for acyclic digraphs also holds for digraphs where the circumference is bounded by a constant.

Small cycles

Let $\operatorname{circ}(D)$ denote the circumference of a digraph D (i.e. the length of a longest cycle in D). Assume all weights are at least 1 .

Theorem 8, [1]: Assume that there exist constants $k>0$ and $0<\alpha<1$ such that $\operatorname{mac}(H) \geq \frac{w(H)}{4}+k w(H)^{\alpha}$ for all acyclic digraphs H. If D is an arbitrary arc-weighted digraph then,

$$
\operatorname{mac}(D) \geq \frac{w(D)}{4}+\frac{k}{(4 k+1) \cdot \operatorname{circ}(D)+1} \times w(D)^{\alpha}
$$

The proof of Theorem 8 uses the following theorem.
Theorem 9 (Bondy, 1976): For all strong digraphs D we have $\chi(D) \leq \operatorname{circ}(D)$.

So, any result holding for acyclic digraphs also holds for digraphs where the circumference is bounded by a constant.

Final open problem

For simple digraphs the following holds.

Theorem 3 (Alon et al): There exists a constant k_{1}^{s}, such that for every integer $m \geq 1$ there exists an acyclic digraph D_{m}^{s} with m arcs and $\operatorname{mac}\left(D_{m}^{s}\right) \leq \frac{m}{4}+k_{1}^{s} m^{0.8}$.

Theorem 4 (Alon et al): There exists a constant k_{2}^{s}, such that $\operatorname{mac}(D) \geq \frac{m}{4}+k_{2}^{s} m^{0.6}$ for all acyclic digraphs D of size m.

Open Problem: Close the gap between 0.6 and 0.8 for simple acyclic digraphs D.

End of first part of the talk

This completes the first part of the talk, which was based on the paper
[1] Jiangdong Ai, Stefanie Gerke, Gregory Gutin, Anders Yeo and Yacong Zhou. Bounds on Maximum Weight Directed Cut. Submitted.

The second part of the talk will be based on the paper
[2] Argyrios Deligkas, Eduard Eiben, Gregory Gutin, Philip R.
Neary and Anders Yeo Complexity of Efficient Outcomes in
Binary-Action Polymatrix Games with Implications for
Coordination Problems. Accepted at IJCAI 2023.

End of first part of the talk

This completes the first part of the talk, which was based on the paper
[1] Jiangdong Ai, Stefanie Gerke, Gregory Gutin, Anders Yeo and Yacong Zhou. Bounds on Maximum Weight Directed Cut. Submitted.

The second part of the talk will be based on the paper
[2] Argyrios Deligkas, Eduard Eiben, Gregory Gutin, Philip R. Neary and Anders Yeo Complexity of Efficient Outcomes in Binary-Action Polymatrix Games with Implications for Coordination Problems. Accepted at IJCAI 2023.

Generalization of max-cut in digraphs

Let D be a digraph, such that for each arc $a \in A(D)$ we are given values $x x(a), x y(a), y x(a)$ and $y y(a)$. We want to find a partition (X, Y) of $V(D)$ that maximizes $\sum_{a \in A(D)} v a l(a)$, where

$$
\operatorname{val}(u v)= \begin{cases}x x(u v) & \text { if } u, v \in X \\ x y(u v) & \text { if } u \in X \text { and } v \in X \\ y x(u v) & \text { if } u \in Y \text { and } v \in X \\ y y(u v) & \text { if } u, v \in Y\end{cases}
$$

We denote the values $(x x(a), x y(a), y x(a), y y(a))$ by

$$
M(a)=\left[\begin{array}{ll}
x x(u v) & x y(u v) \\
x y(u v) & y y(u v)
\end{array}\right]
$$

Example

Consider the following example

$$
M(a)=\left[\begin{array}{ll}
x x(u v) & x y(u v) \\
x y(u v) & y y(u v)
\end{array}\right]
$$

$\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$

$$
\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right]
$$

What is an optimal partition?
The optimal partition is $(\{a, d\},\{b, c\})$ with value 13 .

Example

Consider the following example

$$
M(a)=\left[\begin{array}{ll}
x x(u v) & x y(u v) \\
x y(u v) & y y(u v)
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right]
$$

What is an optimal partition?
The optimal partition is $(\{a, d\},\{b, c\})$ with value 13 .

Generalization of max-cut in dgraphs

In order to obtain a dichotomy, we will let \mathcal{F} denote the list of matrices that are allowed.

We assume that if a matrix $M \in \mathcal{F}$ is allowed to be used then every multiple of M is also allowed to be used.

Example: The directed max-cut problem (we count the number of (X, Y)-arcs) can be reduced to the case when $\mathcal{F}=$
then the problem is NP-hard.

We give a dichotomy for this problem.

Generalization of max-cut in dgraphs

In order to obtain a dichotomy, we will let \mathcal{F} denote the list of matrices that are allowed.

We assume that if a matrix $M \in \mathcal{F}$ is allowed to be used then every multiple of M is also allowed to be used.

Example: The directed max-cut problem (we count the number of (X, Y)-arcs) can be reduced to the case when $\mathcal{F}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

then the problem is NP-hard.

We give a dichotomy for this problem.

Generalization of max-cut in dgraphs

In order to obtain a dichotomy, we will let \mathcal{F} denote the list of matrices that are allowed.

We assume that if a matrix $M \in \mathcal{F}$ is allowed to be used then every multiple of M is also allowed to be used.

Example: The directed max-cut problem (we count the number of (X, Y)-arcs $)$ can be reduced to the case when $\mathcal{F}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

So, if $\mathcal{F}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ then the problem is NP-hard.
We give a dichotomy for this problem.

Generalization of max-cut in dgraphs

In order to obtain a dichotomy, we will let \mathcal{F} denote the list of matrices that are allowed.

We assume that if a matrix $M \in \mathcal{F}$ is allowed to be used then every multiple of M is also allowed to be used.

Example: The directed max-cut problem (we count the number of (X, Y)-arcs $)$ can be reduced to the case when $\mathcal{F}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

So, if $\mathcal{F}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ then the problem is NP-hard.
We give a dichotomy for this problem.

Dichotomy

We are looking at the problem $\operatorname{MWDP}(\mathcal{F})$ (Maximum Weighted Digraph Partition).

Given \mathcal{F} we define the following 3 properties.

Theorem 10, [2]: $\operatorname{MWDP}(\mathcal{F})$ is polynomial if Property (a),
Property (b) or Property (c) holds and NP-hard otherwise.

Dichotomy

We are looking at the problem $\operatorname{MWDP}(\mathcal{F})$ (Maximum Weighted Digraph Partition).

We are given a digraph, D, and functions $f: A(D) \rightarrow \mathcal{F}$ and $c: A(D) \rightarrow \mathbb{R}^{+}$, such that the matrix $c(a) \cdot f(a)$ is used on arc a.

Given \mathcal{F} we define the following 3 properties.

Theorem 10, [2]: $\operatorname{MWDP}(\mathcal{F})$ is polynomial if Property (a), Property (b) or Property (c) holds and NP-hard otherwise.

Dichotomy

We are looking at the problem $\operatorname{MWDP}(\mathcal{F})$ (Maximum Weighted Digraph Partition).

We are given a digraph, D, and functions $f: A(D) \rightarrow \mathcal{F}$ and $c: A(D) \rightarrow \mathbb{R}^{+}$, such that the matrix $c(a) \cdot f(a)$ is used on arc a.

Given \mathcal{F} we define the following 3 properties.
(a): $m_{11}+m_{22} \geq m_{12}+m_{21}$ for all matrices $\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right] \in \mathcal{F}$.
(b): $m_{11} \geq \max \left\{m_{12}, m_{21}, m_{22}\right\}$ for all matrices $\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right] \in \mathcal{F}$.
(c): $m_{22} \geq \max \left\{m_{11}, m_{12}, m_{21}\right\}$ for all matrices $\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right] \in \mathcal{F}$.

Theorem 10, [2]:
Property (b) or Property (c) holds and NP-hard otherwise.

Dichotomy

We are looking at the problem $\operatorname{MWDP}(\mathcal{F})$ (Maximum Weighted Digraph Partition).

We are given a digraph, D, and functions $f: A(D) \rightarrow \mathcal{F}$ and $c: A(D) \rightarrow \mathbb{R}^{+}$, such that the matrix $c(a) \cdot f(a)$ is used on arc a.

Given \mathcal{F} we define the following 3 properties.
(a): $m_{11}+m_{22} \geq m_{12}+m_{21}$ for all matrices $\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right] \in \mathcal{F}$.
(b): $m_{11} \geq \max \left\{m_{12}, m_{21}, m_{22}\right\}$ for all matrices $\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right] \in \mathcal{F}$.
(c): $m_{22} \geq \max \left\{m_{11}, m_{12}, m_{21}\right\}$ for all matrices $\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right] \in \mathcal{F}$.

Theorem 10, [2]: $\operatorname{MWDP}(\mathcal{F})$ is polynomial if Property (a), Property (b) or Property (c) holds and NP-hard otherwise.

We will not go through the proof of Theorem 10, but instead give some applications.

If Property (a) holds then we can reduce the problem to finding a (s, t)-minimum cut in an auxilary digraph.

The NP-hardness results require looking at a number of cases and using different techniques for each.

We will not go through the proof of Theorem 10, but instead give some applications.

However, note that if Property (b) or Property (c) hold then the problem is trivially polynomial (by letting $X=V(D)$ or $Y=V(D)$).

If Property (a) holds then we can reduce the problem to finding a (s, t)-minimum cut in an auxilary digraph.

The NP-hardness results require looking at a number of cases and using different techniques for each.

We will not go through the proof of Theorem 10, but instead give some applications.

However, note that if Property (b) or Property (c) hold then the problem is trivially polynomial (by letting $X=V(D)$ or $Y=V(D)$).

If Property (a) holds then we can reduce the problem to finding a (s, t)-minimum cut in an auxilary digraph.

The NP-hardness results require looking at a number of cases and using different techniques for each.

We will not go through the proof of Theorem 10, but instead give some applications.

However, note that if Property (b) or Property (c) hold then the problem is trivially polynomial (by letting $X=V(D)$ or $Y=V(D)$).

If Property (a) holds then we can reduce the problem to finding a (s, t)-minimum cut in an auxilary digraph.

The NP-hardness results require looking at a number of cases and using different techniques for each.

Application 1, arc-weighted directed max-cut

Let (D, f, c) be an instance of $\operatorname{MWDP}(\mathcal{F})$, where $\mathcal{F}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

By our dichotomy, $\operatorname{MWDP}(\mathcal{F})$ is NP-hard.

Let the weight of any arc in D be $c(a)$.

Now the solution to $\operatorname{MWDP}(\mathcal{F})$ is exactly a directed max-cut in D.

So our dichtomy implies that arc-weighted directed max-cut is NP-hard.

Application 1, arc-weighted directed max-cut

Let (D, f, c) be an instance of $\operatorname{MWDP}(\mathcal{F})$, where $\mathcal{F}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

By our dichotomy, $M W D P(\mathcal{F})$ is NP-hard.

Let the weight of any arc in D be $c(a)$.

Now the solution to $\operatorname{MWDP}(\mathcal{F})$ is exactly a directed max-cut in D.

So our dichtomy implies that arc-weighted directed max-cut is NP-hard.

Application 1, arc-weighted directed max-cut

Let (D, f, c) be an instance of $\operatorname{MWDP}(\mathcal{F})$, where $\mathcal{F}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

By our dichotomy, $M W D P(\mathcal{F})$ is NP-hard.

Let the weight of any arc in D be $c(a)$.

Now the solution to $\operatorname{MWDP}(\mathcal{F})$ is exactly a directed max-cut in D.

So our dichtomy implies that arc-weighted directed max-cut is NP-hard

Application 1, arc-weighted directed max-cut

Let (D, f, c) be an instance of $\operatorname{MWDP}(\mathcal{F})$, where $\mathcal{F}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

By our dichotomy, $M W D P(\mathcal{F})$ is NP-hard.

Let the weight of any arc in D be $c(a)$.

Now the solution to $\operatorname{MWDP}(\mathcal{F})$ is exactly a directed max-cut in D.

So our dichtomy implies that arc-weighted directed max-cut is NP-hard

Application 1, arc-weighted directed max-cut

Let (D, f, c) be an instance of $\operatorname{MWDP}(\mathcal{F})$, where $\mathcal{F}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

By our dichotomy, $M W D P(\mathcal{F})$ is NP-hard.

Let the weight of any arc in D be $c(a)$.

Now the solution to $\operatorname{MWDP}(\mathcal{F})$ is exactly a directed max-cut in D.

So our dichtomy implies that arc-weighted directed max-cut is NP-hard.

Application 2, Poly-matrix games, from economics

We are given a number of players, which we think of as vertices in a graph, G. Each player has to chose Strategy 1 or Stratergy 2.

An edge $u v \in A(D)$ indicates that there is a pay-off depending on the stratergies players u and v have chosen.

v's pay-off
We want to know which stratergies should be played to maximize the overall pay-out.

Application 2, Poly-matrix games, from economics

We are given a number of players, which we think of as vertices in a graph, G. Each player has to chose Strategy 1 or Stratergy 2.

An edge $u v \in A(D)$ indicates that there is a pay-off depending on the stratergies players u and v have chosen.

to indicate player
v 's pay-off
We want to know which stratergies should be played to maximize the overall pay-out.

Application 2, Poly-matrix games, from economics

We are given a number of players, which we think of as vertices in a graph, G. Each player has to chose Strategy 1 or Stratergy 2.

An edge $u v \in A(D)$ indicates that there is a pay-off depending on the stratergies players u and v have chosen.

Let $M_{u}(u v)=\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]$ be the matrix associated with edge $u v$, such that u gets pay-off $m_{i j}$ if and only if player u choses Stratergy i and player v choses Stratergy j.
v 's pay-off.
We want to know which stratergies should be played to maximize the overall pay-out.

Application 2, Poly-matrix games, from economics

We are given a number of players, which we think of as vertices in a graph, G. Each player has to chose Strategy 1 or Stratergy 2.

An edge $u v \in A(D)$ indicates that there is a pay-off depending on the stratergies players u and v have chosen.

Let $M_{u}(u v)=\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]$ be the matrix associated with edge $u v$, such that u gets pay-off $m_{i j}$ if and only if player u choses Stratergy i and player v choses Stratergy j.

Analogously, we define $M_{v}(u v)=\left[\begin{array}{cc}m_{11}^{\prime} & m_{12}^{\prime} \\ m_{21}^{\prime} & m_{22}^{\prime}\end{array}\right]$ to indicate player v's pay-off.

We want to know which stratergies should be played to maximize the overall pay-out.

Application 2, Poly-matrix games, from economics

We are given a number of players, which we think of as vertices in a graph, G. Each player has to chose Strategy 1 or Stratergy 2.

An edge $u v \in A(D)$ indicates that there is a pay-off depending on the stratergies players u and v have chosen.

Let $M_{u}(u v)=\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]$ be the matrix associated with edge $u v$, such that u gets pay-off $m_{i j}$ if and only if player u choses Stratergy i and player v choses Stratergy j.

Analogously, we define $M_{v}(u v)=\left[\begin{array}{cc}m_{11}^{\prime} & m_{12}^{\prime} \\ m_{21}^{\prime} & m_{22}^{\prime}\end{array}\right]$ to indicate player v 's pay-off.

We want to know which stratergies should be played to maximize the overall pay-out.

Application 2, Poly-matrix games, from economics

We now let D be any orientation of G.
For every edge $u v \in E(G)$ we can compute the pay-out for u and the pay-out for v, given all 4 permutations of stratergies.

We can then build a matrix M that gives us the over-all payout as seen in the following example.
$M_{u}(u v)=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $M_{v}(u v)=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]$ implies that
$M=\left[\begin{array}{ll}1+5 & 2+7 \\ 3+6 & 4+8\end{array}\right]$, if $u v \in A(D)$.
Letting \mathcal{F} contain all the obtained matrices we have transformed the problem into $M W D P(\mathcal{F})$.

Application 2, Poly-matrix games, from economics

We now let D be any orientation of G.
For every edge $u v \in E(G)$ we can compute the pay-out for u and the pay-out for v, given all 4 permutations of stratergies.

We can then build a matrix M that gives us the over-all payout as seen in the following example.
$M_{u}(u v)=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $M_{v}(u v)=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]$ implies that
$M=\left[\begin{array}{ll}1+5 & 2+7 \\ 3+6 & 4+8\end{array}\right]$, if $u v \in A(D)$.
Letting \mathcal{F} contain all the obtained matrices we have transformed the problem into $\operatorname{MWDP}(\mathcal{F})$.

Application 2, Poly-matrix games, from economics

This problem was originally raised when all matrices have zero's in the off-digaonal ($\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$), which our dichotomy now proves is polynomial.

Our results also indicate why "coordination-games" are easy and "anti-coordination-games" are difficult (in general).

Our results can also be used to determine the complexity of maximizing the potential of the game.

We will not go into what these game-theoretical terms mean

Application 2, Poly-matrix games, from economics

This problem was originally raised when all matrices have zero's in the off-digaonal $\left(\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]\right)$, which our dichotomy now proves is polynomial.

Our results also indicate why "coordination-games" are easy and "anti-coordination-games" are difficult (in general).

Our results can also be used to determine the complexity of maximizing the potential of the game.

We will not go into what these game-theoretical terms mean....

Application 3, Directed Min (s, t)-cut

Given a digraph, D, with $s, t \in V(D)$, find a (s, t)-partition $\left(X_{1}, X_{2}\right)$ with the fewest number of arcs from X_{1} to X_{2}.

This is equivalent to finding the largest number of arc-disjoint paths from s to t (by Menger's Theorem)

All arcs of D get associated with matrix M. We then add a new vertex s^{\prime} and the arc $s^{\prime} s$ which we associate with matrix S. We also add a new vertex t^{\prime} and the arc $t t^{\prime}$ which we associate with matrix T

Now the maximum value we can obtain is $3|A(D)|$ minus the size of a minimum (s, t)-cut. So by our dichotomy result this is polynomial

Application 3, Directed Min (s, t)-cut

Given a digraph, D, with $s, t \in V(D)$, find a (s, t)-partition $\left(X_{1}, X_{2}\right)$ with the fewest number of arcs from X_{1} to X_{2}.

This is equivalent to finding the largest number of arc-disjoint paths from s to t (by Menger's Theorem).

All arcs of D get associated with matrix M. We then add a new vertex s^{\prime} and the arc $s^{\prime} s$ which we associate with matrix S. We also add a new vertex t^{\prime} and the arc $t t^{\prime}$ which we associate with matrix T

Now the maximum value we can obtain is $3|A(D)|$ minus the size of a minimum (s, t)-cut. So by our dichotomy result this is polynomial

Application 3, Directed Min (s, t)-cut

Given a digraph, D, with $s, t \in V(D)$, find a (s, t)-partition $\left(X_{1}, X_{2}\right)$ with the fewest number of arcs from X_{1} to X_{2}.

This is equivalent to finding the largest number of arc-disjoint paths from s to t (by Menger's Theorem).

Let $M=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], S=\left[\begin{array}{cc}|A(D)| & 0 \\ 0 & 0\end{array}\right]$ and $T=\left[\begin{array}{cc}0 & 0 \\ 0 & |A(D)|\end{array}\right]$.
All arcs of D get associated with matrix M. We then add a new vertex s^{\prime} and the arc $s^{\prime} s$ which we associate with matrix S. We also add a new vertex t^{\prime} and the arc $t t^{\prime}$ which we associate with matrix T

Now the maximum value we can obtain is $3|A(D)|$ minus the size of a minimum (s, t)-cut. So by our dichotomy result this is polynomial

Application 3, Directed Min (s, t)-cut

Given a digraph, D, with $s, t \in V(D)$, find a (s, t)-partition $\left(X_{1}, X_{2}\right)$ with the fewest number of arcs from X_{1} to X_{2}.

This is equivalent to finding the largest number of arc-disjoint paths from s to t (by Menger's Theorem).

Let $M=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], S=\left[\begin{array}{cc}|A(D)| & 0 \\ 0 & 0\end{array}\right]$ and $T=\left[\begin{array}{cc}0 & 0 \\ 0 & |A(D)|\end{array}\right]$.
All arcs of D get associated with matrix M. We then add a new vertex s^{\prime} and the arc $s^{\prime} s$ which we associate with matrix S. We also add a new vertex t^{\prime} and the arc $t t^{\prime}$ which we associate with matrix T.

Now the maximum value we can obtain is $3|A(D)|$ minus the size of a minimum (s, t)-cut. So by our dichotomy result this is polynomial.

Application 4, Max Average Degree

Given a graph, G, and an integer k, find a vertex set $X \subseteq V(G)$ such that the induced subgraph $G[X]$ has average degree strictly greater than k.

Let D be any orientation of G after adding a nendent edge to each vertex $(|V(D)|=2|V(G)|)$. Associate M_{1} to each pendent arc and M_{2} to all other arcs of D.

This gives us an instance of $M W D P(\mathcal{F})$ and let (X, Y) be an optimal solution. The value of this is the following $(x=|X \cap V(G)|$ and $v=|Y \cap V(G)|)$ $s=k \cdot x+2 e(Y, Y)=k|V(D)|-k \cdot y+2 e(Y, Y)$

Application 4, Max Average Degree

Given a graph, G, and an integer k, find a vertex set $X \subseteq V(G)$ such that the induced subgraph $G[X]$ has average degree strictly greater than k.
Let $M_{1}=\left[\begin{array}{ll}k & 0 \\ 0 & 0\end{array}\right]$ and $M_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right]$ and $\mathcal{F}=\left\{M_{1}, M_{2}\right\}$.
Let D be any orientation of G af-
G © - ter adding a pendent edge to each vertex $(|V(D)|=2|V(G)|)$.

Associate M_{1} to each pendent arc and M_{2} to all other arcs of D.

This gives us an instance of $\operatorname{MWDP}(\mathcal{F})$ and let (X, Y) be an optimal solution. The value of this is the following $(x=|X \cap V(G)|$ and $y=|Y \cap V(G)|)$.
$s=k \cdot x+2 e(Y, Y)=k|V(D)|-k \cdot y+2 e(Y, Y)$.

Application 4, Max Average Degree

So, $s>k|V(D)|$ if and only if $2 e(Y, Y)>k|Y|$.

$$
s=k|V(D)|-k|Y|+2 e(Y, Y)
$$

So, there exists a subgraph with average degree greater than k if and only if the solution to $\operatorname{MWDP}(\mathcal{F})$ is greater than $k|V(D)|$.

By our dichotomy this implies that the Max-average-degree problem is polynomial.

Application 4, Max Average Degree

So, $s>k|V(D)|$ if and only if $2 e(Y, Y)>k|Y|$.

$$
s=k|V(D)|-k|Y|+2 e(Y, Y)
$$

This is equivalent with $k<\frac{2 e(Y, Y)}{|Y|}=\frac{\sum_{y \in Y} d_{Y}(y)}{|Y|}=\operatorname{Avg}-\operatorname{deg}(Y)$.

So, there exists a subgraph with average degree greater than k if and only if the solution to $\operatorname{MWDP}(\mathcal{F})$ is greater than $k|V(D)|$

By our dichotomy this implies that the Max-average-degree problem is polynomial.

Application 4, Max Average Degree

So, $s>k|V(D)|$ if and only if $2 e(Y, Y)>k|Y|$.

$$
s=k|V(D)|-k|Y|+2 e(Y, Y)
$$

This is equivalent with $k<\frac{2 e(Y, Y)}{|Y|}=\frac{\sum_{y \in \vdash} d_{Y}(y)}{|Y|}=\operatorname{Avg}-\operatorname{deg}(Y)$.

So, there exists a subgraph with average degree greater than k if and only if the solution to $\operatorname{MWDP}(\mathcal{F})$ is greater than $k|V(D)|$.

By our dichotomy this implies that the Max-average-degree problem is polynomial.

Application 4, Max Average Degree

So, $s>k|V(D)|$ if and only if $2 e(Y, Y)>k|Y|$.

$$
s=k|V(D)|-k|Y|+2 e(Y, Y)
$$

This is equivalent with $k<\frac{2 e(Y, Y)}{|Y|}=\frac{\sum_{y \in Y} d_{Y}(y)}{|Y|}=\operatorname{Avg}-\operatorname{deg}(Y)$.

So, there exists a subgraph with average degree greater than k if and only if the solution to $\operatorname{MWDP}(\mathcal{F})$ is greater than $k|V(D)|$.

By our dichotomy this implies that the Max-average-degree problem is polynomial.

Application 5, Max Density

Given a graph, G, find a vertex set $X \subseteq V(G)$ such that the number of edges divided by the number of vertices in the induced subgraph $G[X]$ is maximum possible.

This is polynomial by the above result on the Max-average-degree problem as $e(X, X) /|X|$ is maximum if and only if $2 e(X, X) /|X|$ is maxımum

So, by our dichotomy result this problem is also polynomial.

Application 5, Max Density

Given a graph, G, find a vertex set $X \subseteq V(G)$ such that the number of edges divided by the number of vertices in the induced subgraph $G[X]$ is maximum possible.

This is polynomial by the above result on the Max-average-degree problem as $e(X, X) /|X|$ is maximum if and only if $2 e(X, X) /|X|$ is maximum.

So, by our dichotomy result this problem is also polynomial.

Application 5, Max Density

Given a graph, G, find a vertex set $X \subseteq V(G)$ such that the number of edges divided by the number of vertices in the induced subgraph $G[X]$ is maximum possible.

This is polynomial by the above result on the Max-average-degree problem as $e(X, X) /|X|$ is maximum if and only if $2 e(X, X) /|X|$ is maximum.

So, by our dichotomy result this problem is also polynomial.

Application 6, 2-color partition

Given a 2 -edge-colored graph, G, find a partition $\left(X_{1}, X_{2}\right)$ which maximizes the sum of the number of edges in X_{1} of color one and the number of edges in X_{2} of color two.

By associating M_{1} to any orientation of each edge of color one and associating M_{2} to any orientation of each edge of color two we note that our dichotomy implies that this problem is polynomial.

Application 6, 2-color partition

Given a 2 -edge-colored graph, G, find a partition $\left(X_{1}, X_{2}\right)$ which maximizes the sum of the number of edges in X_{1} of color one and the number of edges in X_{2} of color two.

Let $M_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $M_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ and $\mathcal{F}=\left\{M_{1}, M_{2}\right\}$.

By associating M_{1} to any orientation of each edge of color one and associating M_{2} to any orientation of each edge of color two we note that our dichotomy implies that this problem is polynomial.

Application 6, 2-color partition

Given a 2-edge-colored graph, G, find a partition $\left(X_{1}, X_{2}\right)$ which maximizes the sum of the number of edges in X_{1} of color one and the number of edges in X_{2} of color two.

Let $M_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $M_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ and $\mathcal{F}=\left\{M_{1}, M_{2}\right\}$.

By associating M_{1} to any orientation of each edge of color one and associating M_{2} to any orientation of each edge of color two we note that our dichotomy implies that this problem is polynomial.

Application 7 (if time), Closeness to Eulerian

Given a digraph, D, find a partition $\left(X_{1}, X_{2}\right)$ of $V(D)$ where the difference between the number of arcs from X_{1} to X_{2} and the number of arcs from X_{2} to X_{1} is maximized.

Note that this value is zero for Eulerian digraphs.

This value can also be shown to be equal to the minimum number of paths that need to be added to D in order to make it Eulerian.

Now $\operatorname{MWDP}(\mathcal{F})$ solves the original problem, which by our dichotomy is polynomial.

Application 7 (if time), Closeness to Eulerian

Given a digraph, D, find a partition $\left(X_{1}, X_{2}\right)$ of $V(D)$ where the difference between the number of arcs from X_{1} to X_{2} and the number of arcs from X_{2} to X_{1} is maximized.

Note that this value is zero for Eulerian digraphs.

This value can also be shown to be equal to the minimum number of paths that need to be added to D in order to make it Eulerian.

Now $\operatorname{MWDP}(\mathcal{F})$ solves the original problem, which by our dichotomy is polynomial.

Application 7 (if time), Closeness to Eulerian

Given a digraph, D, find a partition $\left(X_{1}, X_{2}\right)$ of $V(D)$ where the difference between the number of arcs from X_{1} to X_{2} and the number of arcs from X_{2} to X_{1} is maximized.

Note that this value is zero for Eulerian digraphs.

This value can also be shown to be equal to the minimum number of paths that need to be added to D in order to make it Eulerian.

Let \mathcal{F} contain $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ (or alternatively $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$).
Now $\operatorname{MWDP}(\mathcal{F})$ solves the original problem, which by our
dichotomy is polynomial.

Application 7 (if time), Closeness to Eulerian

Given a digraph, D, find a partition $\left(X_{1}, X_{2}\right)$ of $V(D)$ where the difference between the number of arcs from X_{1} to X_{2} and the number of arcs from X_{2} to X_{1} is maximized.

Note that this value is zero for Eulerian digraphs.

This value can also be shown to be equal to the minimum number of paths that need to be added to D in order to make it Eulerian.

Let \mathcal{F} contain $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ (or alternatively $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$).
Now $\operatorname{MWDP}(\mathcal{F})$ solves the original problem, which by our dichotomy is polynomial.

Open problems

One could maybe try to generalize the results to 3-partitions (using 3×3 matrices), but this is maybe difficult and I do not have any immediate applications.

But it would be interesting to see if there are any other problems that can be solved using the above dichotomy.

Or one could try to prove the same dichotomy, where we do not require that if a matrix belongs to \mathcal{F} then all multiples of that matrix is also allowed to be used in the digraph.

Open problems

One could maybe try to generalize the results to 3-partitions (using 3×3 matrices), but this is maybe difficult and I do not have any immediate applications.

But it would be interesting to see if there are any other problems that can be solved using the above dichotomy.

Or one could try to prove the same dichotomy, where we do not require that if a matrix belongs to \mathcal{F} then all multiples of that matrix is also allowed to be used in the digraph.

Open problems

One could maybe try to generalize the results to 3-partitions (using 3×3 matrices), but this is maybe difficult and I do not have any immediate applications.

But it would be interesting to see if there are any other problems that can be solved using the above dichotomy.

Or one could try to prove the same dichotomy, where we do not require that if a matrix belongs to \mathcal{F} then all multiples of that matrix is also allowed to be used in the digraph.

The End

Thank you for the invitation to come here.
\section*{And thank you to the organizers for doing a great job.}
\section*{Any questions?}

The End

Thank you for the invitation to come here.

And thank you to the organizers for doing a great job.

Any questions?

