Privacy Preserving Computation of Medical Statistics

Amal Mawass and Jan Ramon

Table of Contents

- O-statistics
- Medical statistics examples
 The Hosmer-Lemeshow statistic
- Future objectives

Context

- Each party (hospital) owns a data set (results of a clinical trial for example) and each party doesn't want to share its data with the others.
- Protocol:
 - 1. Compute a U-statistic: Agree on the definition of a U-statistic, and all parties collaborate in a encrypted way to compute the U-statistic based on the union of the datasets.
 - 2. Publish: Send a message to all parties, for example send a model or other information
- E.g., linear regression, decision trees . . .

Definition

For $m \in \mathbb{N}_0$ and $\Phi : \mathbb{R}^m \to \mathbb{R}$ a symmetric function.

For a sample $X = (x_1, \ldots, x_n) \in \mathbb{R}^{n \times m}$ of size $n \ge m$:

$$U(X) = \binom{n}{m}^{-1} \sum_{i_1 < \cdots < i_r} \Phi(x_{i_1}, \ldots, x_{i_m})$$

is called a U-statistic of order m and kernel Φ .

This statistic is the mean of $\Phi(x_{i_1}, \ldots, x_{i_m})$ on all the *m*-subsets $\{x_{i_1}, \ldots, x_{i_m}\}$ of $\{x_1, \ldots, x_n\}$

• The classical estimator of the empirical mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is a U-statistic of order 1, and of kernel $\Phi : x \mapsto x$.

• The unbiased variance estimator $\widetilde{S}^2(X) = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{X})^2$ can be rewritten $S(X) = \frac{2}{n(n-1)} \sum_{i < j} \frac{(x_i - x_j)^2}{2}$. It is therefore a U-statistic of order 2 and of kernel $\Phi : (x_1, x_2) \mapsto \frac{(x_1 - x_2)^2}{2}$.

The Hosmer-Lemeshow test

This is a calibration test for the logistic regression model. This model predicts the probability of a certain class or event, e.g., success/fail. The Hosmer-Lemeshow test aims to compare the expected and observed counts.

Computation

- 1. Compute p(success) for the *n* subjects using the model
- 2. Order the probabilities
- 3. Divide them in Q groups with approximately the same number of subjects in each group (normally Q = 10)
- 4. Compute the expected (predicted) counts (E_{0i}, E_{1i}) and observed (in the dataset) counts $(0_{0i}, O_{1i})$ in each group *i*.
- 5. Compute the Hosmer-Lemeshow test:

$$H = \sum_{i=1}^{Q} \left(\frac{(O_{1i} - E_{1i})^2}{E_{1i}} + \frac{(O_{0i} - E_{0i})^2}{E_{0i}} \right),$$

6. Compare the statistic to a $\mathcal{X}^2(Q-2)$

Algorithm (1/2)

function Search($a, b \in \mathbb{R}$: probability interval to search; t : target) while $b - a > \psi$ do $\triangleright \psi = \text{precision} / \text{smallest probability}$ $m \leftarrow (a+b)/2$ Consider middle $f_m \leftarrow UStat(\Phi((p, o))) := \mathbb{1}[p < f_m])$ Compute U-statistic if $f_m < t$ then Split interval $b \leftarrow m$ else $a \leftarrow m$ end if end while \triangleright Until interval small enough return (a+b)/2end function

Algorithm (2/2)

function HLstat(*Q* : number of groups)

$$t_{0} \leftarrow 0 ; t_{Q} \leftarrow 1 + \psi$$

for $i = 1 \dots Q - 1$ do
 $t_{i} \leftarrow \text{Search}(t_{i-1}, 1, i/Q)$
end for
for $i = 1 \dots Q$, $s \in \{0, 1\}$ do
 $E_{s,i} \leftarrow Q.UStat(\Phi((p, o))) := p\mathbb{1}[t_{i-1} \le p \le t_{i}])$
 $O_{s,i} \leftarrow Q.UStat(\Phi((p, o))) := o\mathbb{1}[t_{i-1} \le p \le t_{i}]$
end for
return $\sum_{i=1}^{Q} \left(\frac{(O_{1i} - E_{1i})^{2}}{E_{1i}} + \frac{(O_{0i} - E_{0i})^{2}}{E_{0i}} \right)$
and function

e

Some results

Complexity:

- This algorithm has a complexity of $O(Q \log(1/\psi))$.
- The number of computed U-statistics is $O((Q-1)\log(1/\psi) + 3Q)$.

Privacy:

Thm 1. This algorithm achieves ϵ -DP if $UStat(\Phi)$ adds $Lap\left(\frac{(Q-1)\log(1/\psi)+3Q}{n\epsilon}\right)$ noise. **Proof:** Classic DP-composition, dividing the privacy budget equally over all computed *U*-statitics.

Can we do better?

sequence DP

Lemma [Continual observation, Dwork]:

- Setup:
 - Let $N \in \mathbb{N}$ and $L = \lceil \log_2(N) \rceil$.
 - Consider a dataset / sequence $Y = (y_1 \dots y_N) \in \{0, 1\}^N$.
 - Let $c_i = \sum_{j=1}^i y_j$ be partial sums.
- Let Algorithm *A* do:
 - For $1 \leq j \leq L$ and $1 \leq l \leq \lceil N/2^j \rceil$, let $\eta_{l,j} \sim \text{Lap}(1/\epsilon')$.
 - For each i = 1 ... N, publish the noisy partial sum $\hat{c}_i = c_i + \sum_{j=1}^L \eta_{\lceil i/2^j \rceil, j}$
- Then, A is $L\epsilon'$ -differentially private

Mapping our case to sequence

• Let
$$N \in \mathbb{N}$$
 and $L = \lceil \log_2(N) \rceil$:

-
$$N = 1/\psi + 1$$

- $L = \log_2(1/\psi)$
- Consider a dataset / sequence $Y = (y_0 \dots y_N) \in \{0, 1\}^N$:

-
$$y_i = \sum_{j=1}^n \mathbb{1}[(i-1)\psi < p_j \le i\psi]$$

- Assume for simplicity that $j
eq j' \Rightarrow |p_j - p_{j'}| \geq \psi$

$$-y_i \in \{0,1\}$$

- e.g., make $\psi' = \psi/n$ a bit smaller & add 'noise' $p'_i = p_i + i\psi'$

• Let
$$c_i = \sum_{j=1}^i y_j$$
 be partial sums.
- $c_i = \sum_{j=1}^n \mathbb{1}[p_j \le i\psi]$

Apply continual observation lemma

- Adjacent datasets:
 - Dwork's continual observation lemma: one y_i changes
 - Our case: one y_i from 1 to 0, one y_i from 0 to 1.
 - Need a factor of 2.
- We don't query all $\hat{c}_i = \sum_{j=1}^n \mathbb{1}[p_j \le i\psi]$ but only a few needed in the binary searches. A fortiori the lemma applies.
- Sensitivity: 1/n
- In function *Search*, $\eta_{I,j} \sim Lap(1/n\epsilon')$

$$UStat(\Phi((p,o)) := \mathbb{1}[p \le f_m]) = \frac{1}{n} \sum_{j=1}^n \mathbb{1}[p_i \le f_m] + \sum_{j=1}^L \eta_{\lceil i/2^j \rceil, j}$$

then union of calls to Search is 2Le'-DP

Differential privacy

Thm 2. *HLStat achieves* ϵ -*DP with a scheme adding* $\lceil \log_2(1/\psi) \rceil + 1$ *terms of Lap* $\left(\frac{\lceil 2 \log(1/\psi) \rceil + 2 + 4Q}{n\epsilon}\right)$ *noise terms in UStat calls in Search and one Lap* $\left(\frac{\lceil 2 \log(1/\psi) \rceil + 2 + 4Q}{n\epsilon}\right)$ *noise term in UStat calls in HLstat.* **Proof:**

• Calls to UStat in main function HLstat:

- Purpose: calculate $E_{s,i}$ and $O_{s,i}$
- count: 4Q
- Sensitivity: 1/n (all probabilities between 0 and 1)
- Every call is ϵ' -DP
- Total: $4Q\epsilon'$ -DP
- Calls to UStat in function Search: $2L\epsilon'$ -DP
- Set $\epsilon' = \epsilon/(4Q + 2L)$: total algorithm is ϵ -DP.

Better?

Variances of results of calls to UStat:

Open questions

- What is the error due to the noise needed to achieve ϵ -differential privacy?
- Is Thm 2 optimal?

Future work

- Filling more gaps in DP computation of medical statistics
 - especially those typically used during medical studies
- Relevant PMR project tasks
 - WP2: Assessing privacy risk
 - T4.2: Use case: multi-centric studies
 - T3.1: Combining/optimizing (noise-based and cryptography-based) approaches