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» No trusted party to share this data

Current Solutions

» Mostly imply decentralized computations (e.g. PP
Federated Learning [Kairouz et al., 2019])

» Data storage and computations are locally private (e.g.
held in devices)

No control over the correctness of computations
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An Example

» Setof Pq,...,Ps of store owners
» Each P; has a private dataset D;

Run a PP decentralized A(Dy,...,Ds) — M to learn customer
preferences

A malicious P; can poison M to
» decrease customers of other stores
» increase its own profit
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Decentralized systems with untrusted participants

» financial systems [Ben Sasson et al., 2014]
» digital contracts contracts [Blinz et al., 2020]
» Provide privacy while proving consistency of payments

Commit and Prove

» Publish encrypted inputs (e.g. in a blockchain)
» Prove correctness over computations

In our ML setting

» Input remains private, but consistent
» If a party lies, it has to lie repeatedly
» This also holds in non-private ML: not possible to ensure

truth on the input
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activation filters)
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Challenges

ML Computations

» Their domain is R
» Involve transcendental functions (e.g. €%, In(x), ... for
activation filters)
» Sample numbers from Gaussian, Laplacian distributions
(e.g. for Differential Privacy [Dwork, 2006])
The domain of proving frameworks is Z (or Zp, for some big
prime p)
Our contribution
We focus on sampling: prove that a private value x is

sampled from a distribution D.
- But we also contribute in transcendental computations.
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Problem Statement
Let

» s malicious parties Py, ..., Ps that can tamper with the
protocol.

» a well known distribution D.

Forsomeic€ {1,...,s}, sample x € R such that
1. x~D
2. x is private to P;

if at least one party is honest.
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Problem Statement
Let

» s malicious parties Py, ..., Ps that can tamper with the
protocol.

» a well known distribution D.

Forsomeic {1,...,s}, sample x € R such that
1. x~D
2. x is private to P;

if at least one party is honest.

Example 2 Differentially Private Federated Learning

fort=1to T do
At each party P: sample  ~ D, compute ©f <«
LocaLUPDATE(O1, @4 71) 1)
Compute O < 13~ &},

end for
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Private Proofs

Commitments [Blum, 1983]
Commit to a value in Z, while keeping it hidden
» Binding: the value cannot be changed once committed

» Similar to an encrypted value, but not neccesarily
decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]

> Xi,...,X, committed values and C : 2] — Zf, circuit (only
modular + and x)
= can prove C(xy,....X,) =0

» can prove S; and S, = can prove S; \V Sy
» Cost: O(C) and O(cost(S,) + cost(Ss)) for proving/verifying

This is not FHE: We are just proving relations, not computing

over encryptions
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Private Proofs: Examples

> x=y:x—y=0

» bisabit b(1—-b)=0

> x€[0,2"—1]: x— Y7, 2"-b; = 0 for by,..., by bits
» Any polynomial relation in Zp

» If x = Athen S; else if x = B then Sy:

X—A=0AS)V(x—B=0ASy)

\4
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Sampling in the clear
Generate uy, us, ... uniform seeds in (0,1)

Arbitrary Distribution D
Inversion method: x <~ CDF,'(uy), if CDF5!(x) is efficient
Gaussian Distribution

» Central Limit Theorem Approach: x «- | ZLI uj

» Box Muller:

X1 < /—2In(uy)sin(27u2)
X2 <+ \/—21In(uy) cos(2mus)

» Polar Method: uy,us € (—1,1)

p =ul+u3 (ifp>1o0rp=0, re-sample uy,us)
X1 < Ui/ —2In(p)/p
Xo < Uz\/—2In(p)/p
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Uniform Seeds

Form e N,
1. P; commits to a random r € [0, m)
2. each party P;: commit to a random r; € [0,m)
3. each party P;: reveal r;
4. P;commit to u and prove that u = (r+>_7 ; ;) mod m

We know that u ~ /{0, ...,m — 1}, but we don’t know u.

Can amortize the generation of s uniforms with cost O(1) per
party.
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Cryptographic Primitives for R (fixed-precision)

» Encode reals in Z (up to a certain fixed precision)

» Use integer proofs to implement computer operations:
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Proving Transcendental computations

Cryptographic Primitives for R (fixed-precision)

» Encode reals in Z (up to a certain fixed precision)

» Use integer proofs to implement computer operations:
+,%, bit-shift (>>), +

» requires dealing with rounding issues

Use numerical approximations
From computer operations can compute

> sin, cos, log, €%, v/ with CORDIC algorithm [Walther, 1971]
(mostly requires + and >>)

» Gaussian CDF~!(x) with rational functions and Taylor
polynomials

We prove their correct execution
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Preliminar results

Group Exponentiations (GExp) are the dominant computations

» Prove sin, cos, log, €X,v/x with n bits of precision with O(n?)
GExp

(Of independent interest in ML)

Simulated Gaussian sampling proofs

» Central Limit Theorem Approach (CLT)
» Box Muller (BM) and Polar Method (PolM)

» Inversion Method (InvM) with Taylor and rational
approximations
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Experiments

Measured MSE wrt to a quality Gaussian ! over 107 samples
per method
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Measured MSE wrt to a quality Gaussian ! over 107 samples
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A quality sample requires < 3000 GExp
» ~ 0.17 seconds in an Intel Core i7 2 (but largely
optimizable)

Implemented with C++ boost library
2With the implementation by [Franck and GroBschédl, 2017] o
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Arbitrary Distributions: a sketch
Set Membership: Can prove x € S for private x and public
S C 7Zp [Camenisch et al., 2008]
Inversion Method with table lookups (in the clear)
» Sample from D distribution from 2" equiprobable bins
» Precompute 2" points t;, ..., t» of CDF~1in (0, 1)
» Sample uniformly v € {1,..., 2"} and return the u-th point

Private table lookups

» Let D = {enc(1,t;),...,enc(2", tn)} for some integer
encoding enc

» u~U{1,...,2"} Nenc(u,x) e D = x~D

O(1) GExp per sample but O(2™) GExp of preprocessing
(describing D)
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Conclusion

» new approach to prove consiscency in Machine Learning

» computationally tractable proofs of transcendental relations
and statisticals distributions
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Conclusion

» new approach to prove consiscency in Machine Learning

» computationally tractable proofs of transcendental relations
and statisticals distributions

Future Work

» Optimize numerical algorithms for cryptographic primitives

» Try other ZKP frameworks: compare prover work - verifier
work - communication trade offs

» Plug our methods to Multiparty Computation frameworks
(e.g ABY3 [Mohassel and Rindal, 2018])
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Thank you!
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