Private Sampling with Malicious Samplers

César Sabater

INRIA - Lille

October 27, 2021

Work supervised by Jan Ramon and improved by discussions
with Andreas Peter (Univ. of Twente, Netherlands).

1/24

Outline

Introduction and Problem

Existent tools

Our solutions

2/24

Outline

Introduction and Problem

3/24

Context

» Privacy Preserving Machine Learning
» Many parties with sensitive data
» No trusted party to share this data

4/24

Context

» Privacy Preserving Machine Learning
» Many parties with sensitive data
» No trusted party to share this data

Current Solutions

» Mostly imply decentralized computations (e.g. PP
Federated Learning [Kairouz et al., 2019])

» Data storage and computations are locally private (e.g.
held in devices)

4/24

Context

» Privacy Preserving Machine Learning
» Many parties with sensitive data
» No trusted party to share this data

Current Solutions

» Mostly imply decentralized computations (e.g. PP
Federated Learning [Kairouz et al., 2019])

» Data storage and computations are locally private (e.g.
held in devices)

No control over the correctness of computations

4/24

An Example

» Setof Pq,...,Ps of store owners
» Each P; has a private dataset D;

5/24

An Example

» Setof Pq,...,Ps of store owners
» Each P; has a private dataset D;

Run a PP decentralized A(Dy,...,Ds) — M to learn customer
preferences

5/24

An Example

» Setof Pq,...,Ps of store owners
» Each P; has a private dataset D;

Run a PP decentralized A(Dy,...,Ds) — M to learn customer
preferences

A malicious P; can poison M to
» decrease customers of other stores
» increase its own profit

5/24

Similar settings
Decentralized systems with untrusted participants

» financial systems [Ben Sasson et al., 2014]
» digital contracts contracts [Blinz et al., 2020]
» Provide privacy while proving consistency of payments

6/24

Similar settings
Decentralized systems with untrusted participants

» financial systems [Ben Sasson et al., 2014]
» digital contracts contracts [Blinz et al., 2020]
» Provide privacy while proving consistency of payments

Commit and Prove

» Publish encrypted inputs (e.g. in a blockchain)
» Prove correctness over computations

6/24

Similar settings
Decentralized systems with untrusted participants

» financial systems [Ben Sasson et al., 2014]
» digital contracts contracts [Blinz et al., 2020]
» Provide privacy while proving consistency of payments

Commit and Prove

» Publish encrypted inputs (e.g. in a blockchain)
» Prove correctness over computations

In our ML setting

» Input remains private, but consistent
» If a party lies, it has to lie repeatedly
» This also holds in non-private ML: not possible to ensure

truth on the input
6/24

Challenges

ML Computations

» Their domain is R

» Involve transcendental functions (e.g. €%, In(x), ... for
activation filters)

» Sample numbers from Gaussian, Laplacian distributions
(e.g. for Differential Privacy [Dwork, 2006])

7/24

Challenges

ML Computations

» Their domain is R

» Involve transcendental functions (e.g. €%, In(x), ... for
activation filters)

» Sample numbers from Gaussian, Laplacian distributions
(e.g. for Differential Privacy [Dwork, 2006])

The domain of proving frameworks is Z (or Zp, for some big
prime p)

7/24

Challenges

ML Computations

» Their domain is R

» Involve transcendental functions (e.g. €%, In(x), ... for
activation filters)

» Sample numbers from Gaussian, Laplacian distributions
(e.g. for Differential Privacy [Dwork, 2006])

The domain of proving frameworks is Z (or Zp, for some big
prime p)

7/24

Challenges

ML Computations

» Their domain is R
» Involve transcendental functions (e.g. €%, In(x), ... for
activation filters)
» Sample numbers from Gaussian, Laplacian distributions
(e.g. for Differential Privacy [Dwork, 2006])
The domain of proving frameworks is Z (or Zp, for some big
prime p)
Our contribution
We focus on sampling: prove that a private value x is

sampled from a distribution D.
- But we also contribute in transcendental computations.

7/24

Problem Statement
Let

» s malicious parties Py, ..., Ps that can tamper with the
protocol.

» a well known distribution D.

Forsomeic€ {1,...,s}, sample x € R such that
1. x~D
2. x is private to P;

if at least one party is honest.

8/24

Problem Statement
Let

» s malicious parties Py, ..., Ps that can tamper with the
protocol.

» a well known distribution D.

Forsomeic {1,...,s}, sample x € R such that
1. x~D
2. x is private to P;

if at least one party is honest.

Example 2 Differentially Private Federated Learning

fort=1to T do
At each party P: sample ~ D, compute ©f <«
LocaLUPDATE(O1, @4 71) 1)
Compute O < 13~ &},

end for

8/24

Outline

Existent tools

9/24

Private Proofs

Commitments [Blum, 1983]
Commit to a value in Z, while keeping it hidden
» Binding: the value cannot be changed once committed

» Similar to an encrypted value, but not neccesarily
decryptable

10/24

Private Proofs

Commitments [Blum, 1983]
Commit to a value in Z, while keeping it hidden
» Binding: the value cannot be changed once committed

» Similar to an encrypted value, but not neccesarily
decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]

» Xi,...,Xx; committed values and C : Zg’ — Zf, circuit (only

modular + and x)
= can prove C(xy,....X,) =0

10/24

Private Proofs

Commitments [Blum, 1983]
Commit to a value in Z, while keeping it hidden
» Binding: the value cannot be changed once committed

» Similar to an encrypted value, but not neccesarily
decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]

> Xi,...,X, committed values and C : 2] — Zf, circuit (only
modular + and x)
= can prove C(xy,....X,) =0

» can prove S; and S, = can prove S; \V Sy

10/24

Private Proofs

Commitments [Blum, 1983]
Commit to a value in Z, while keeping it hidden
» Binding: the value cannot be changed once committed

» Similar to an encrypted value, but not neccesarily
decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]

> Xi,...,X, committed values and C : 2] — Zf, circuit (only
modular + and x)
= can prove C(xy,....X,) =0

» can prove S; and S, = can prove S; \V Sy
» Cost: O(C) and O(cost(S,) + cost(Ss)) for proving/verifying

10/24

Private Proofs

Commitments [Blum, 1983]
Commit to a value in Z, while keeping it hidden
» Binding: the value cannot be changed once committed

» Similar to an encrypted value, but not neccesarily
decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]

> Xi,...,X, committed values and C : 2] — Zf, circuit (only
modular + and x)
= can prove C(xy,....X,) =0

» can prove S; and S, = can prove S; \V Sy
» Cost: O(C) and O(cost(S,) + cost(Ss)) for proving/verifying

This is not FHE: We are just proving relations, not computing

over encryptions
10/24

Private Proofs: Examples

> x=y:x—y=0

11/24

Private Proofs: Examples

> x=y:x—y=0
» bisabit: b(1—-b)=0

11/24

Private Proofs: Examples

> x=y:x—y=0
» bisabit: b(1—-b)=0
> x€[0,2"—1]: x— Y7, 2"-b; = 0 for by,..., by bits

11/24

Private Proofs: Examples

> x=y:x—y=0

» bisabit: b(1—-b)=0

> x€[0,2"—1]: x— Y7, 2"-b; = 0 for by,..., by bits
» Any polynomial relation in Zp

11/24

Private Proofs: Examples

> x=y:x—y=0

» bisabit b(1—-b)=0

> x€[0,2"—1]: x— Y7, 2"-b; = 0 for by,..., by bits
» Any polynomial relation in Zp

» If x = Athen S; else if x = B then Sy:

X—A=0AS)V(x—B=0ASy)

\4

11/24

Sampling in the clear
Generate uy, us, ... uniform seeds in (0,1)

12/24

Sampling in the clear
Generate uy, us, ... uniform seeds in (0,1)

Arbitrary Distribution D
Inversion method: x <~ CDF,'(uy), if CDF5!(x) is efficient

12/24

Sampling in the clear
Generate u;, Us, . .. uniform seeds in (0,1)

Arbitrary Distribution D
Inversion method: x < CDF ' (uy), if CDF,*(x) is efficient

Gaussian Distribution

» Central Limit Theorem Approach: x «- | Zﬁ‘zl uj

12/24

Sampling in the clear
Generate uy, us, ... uniform seeds in (0,1)

Arbitrary Distribution D
Inversion method: x <~ CDF,'(uy), if CDF5!(x) is efficient

Gaussian Distribution

» Central Limit Theorem Approach: x « % Zﬁ‘zl uj
» Box Miuller:

X1 <+ v/—2In(uy)sin(27us)
X < /—21In(uy) cos(2mu2)

12/24

Sampling in the clear
Generate uy, us, ... uniform seeds in (0,1)

Arbitrary Distribution D
Inversion method: x <~ CDF,'(uy), if CDF5!(x) is efficient
Gaussian Distribution

» Central Limit Theorem Approach: x «- | ZLI uj

» Box Muller:

X1 < /—2In(uy)sin(27u2)
X2 <+ \/—21In(uy) cos(2mus)

» Polar Method: uy,us € (—1,1)

p =ul+u3 (ifp>1o0rp=0, re-sample uy,us)
X1 < Ui/ —2In(p)/p
Xo < Uz\/—2In(p)/p

12/24

Outline

Our solutions

13/24

Uniform Seeds

Form e N,

14/24

Uniform Seeds

Form e N,
1. P; commits to a random r € [0, m)

14/24

Uniform Seeds

Form e N,
1. P; commits to a random r € [0, m)
2. each party P;: commit to a random r; € [0,m)
3. each party P;: reveal r;

14/24

Uniform Seeds

Form e N,
1. P; commits to a random r € [0, m)
2. each party P;: commit to a random r; € [0,m)
3. each party P;: reveal r;
4. P;commit to u and prove that u = (r+>_7 ; ;) mod m

14/24

Uniform Seeds

Form e N,
1. P; commits to a random r € [0, m)
2. each party P;: commit to a random r; € [0,m)
3. each party P;: reveal r;
4. P;commit to u and prove that u = (r+>_7 ; ;) mod m

We know that u ~ /{0, ...,m — 1}, but we don’t know u.

14/24

Uniform Seeds

Form e N,
1. P; commits to a random r € [0, m)
2. each party P;: commit to a random r; € [0,m)
3. each party P;: reveal r;
4. P;commit to u and prove that u = (r+>_7 ; ;) mod m

We know that u ~ /{0, ...,m — 1}, but we don’t know u.

Can amortize the generation of s uniforms with cost O(1) per
party.

14/24

Proving Transcendental computations

Cryptographic Primitives for R (fixed-precision)

» Encode reals in Z (up to a certain fixed precision)

» Use integer proofs to implement computer operations:

+,%, bit-shift (>>), +
» requires dealing with rounding issues

15/24

Proving Transcendental computations

Cryptographic Primitives for R (fixed-precision)

» Encode reals in Z (up to a certain fixed precision)

» Use integer proofs to implement computer operations:
+,%, bit-shift (>>), +

» requires dealing with rounding issues

Use numerical approximations
From computer operations can compute

> sin, cos, log, €%, v/ with CORDIC algorithm [Walther, 1971]
(mostly requires + and >>)

» Gaussian CDF~!(x) with rational functions and Taylor
polynomials

15/24

Proving Transcendental computations

Cryptographic Primitives for R (fixed-precision)

» Encode reals in Z (up to a certain fixed precision)

» Use integer proofs to implement computer operations:
+,%, bit-shift (>>), +

» requires dealing with rounding issues

Use numerical approximations
From computer operations can compute

> sin, cos, log, €%, v/ with CORDIC algorithm [Walther, 1971]
(mostly requires + and >>)

» Gaussian CDF~!(x) with rational functions and Taylor
polynomials

We prove their correct execution

15/24

Preliminar results

Group Exponentiations (GExp) are the dominant computations

» Prove sin, cos, log, €X,v/x with n bits of precision with O(n?)
GExp

(Of independent interest in ML)

Simulated Gaussian sampling proofs

» Central Limit Theorem Approach (CLT)
» Box Muller (BM) and Polar Method (PolM)

» Inversion Method (InvM) with Taylor and rational
approximations

16/24

Experiments

Measured MSE wrt to a quality Gaussian ! over 107 samples
per method

—e— BM
PolM
—e— CLT
—e— InvM - Taylor
* InvM - Rational

S}
1

—
S}
1

IS

. =
3 e
i frr
° °
o 2
s 5
3 3
> =3
a a
c c
& ©
3 b
= =

10000 20000 30000 40000
Group Exponentiations

1000 2000 3000 4000 5000
Group Exponentiations

Implemented with C++ boost library
2
17/24

Experiments

Measured MSE wrt to a quality Gaussian ! over 107 samples
per method

PolM
—e— CLT
—e— InvM - Taylor
* InvM - Rational

.
e
fim)
°
@
<
]
S
=3
v
c
]
51
=

10000 20000 30000 40000
Group Exponentiations

0 1000 2000 3000 4000 5000
Group Exponentiations

A quality sample requires < 3000 GExp
» ~ 0.17 seconds in an Intel Core i7 2 (but largely
optimizable)

Implemented with C++ boost library
2With the implementation by [Franck and GroBschédl, 2017] o

Arbitrary Distributions: a sketch

Set Membership: Can prove x € S for private x and public
S C 7Zp [Camenisch et al., 2008]

18/24

Arbitrary Distributions: a sketch

Set Membership: Can prove x € S for private x and public
S C 7, [Camenisch et al., 2008]

Inversion Method with table lookups (in the clear)

» Sample from D distribution from 2" equiprobable bins
» Precompute 2" points £, . . ., ton of CDF~1in (0,1)

» Sample uniformly v € {1,..., 2"} and return the u-th point

18/24

Arbitrary Distributions: a sketch
Set Membership: Can prove x € S for private x and public
S C 7Zp [Camenisch et al., 2008]
Inversion Method with table lookups (in the clear)
» Sample from D distribution from 2" equiprobable bins
» Precompute 2" points t;, ..., t» of CDF~1in (0, 1)
» Sample uniformly v € {1,..., 2"} and return the u-th point

Private table lookups

» Let D = {enc(1,t;),...,enc(2", tn)} for some integer
encoding enc

» u~U{1,...,2"} Nenc(u,x) e D = x~D

18/24

Arbitrary Distributions: a sketch
Set Membership: Can prove x € S for private x and public
S C 7Zp [Camenisch et al., 2008]
Inversion Method with table lookups (in the clear)
» Sample from D distribution from 2" equiprobable bins
» Precompute 2" points t;, ..., t» of CDF~1in (0, 1)
» Sample uniformly v € {1,..., 2"} and return the u-th point

Private table lookups

» Let D = {enc(1,t;),...,enc(2", tn)} for some integer
encoding enc

» u~U{1,...,2"} Nenc(u,x) e D = x~D

O(1) GExp per sample but O(2™) GExp of preprocessing
(describing D)

18/24

Conclusion

» new approach to prove consiscency in Machine Learning

» computationally tractable proofs of transcendental relations
and statisticals distributions

19/24

Conclusion

» new approach to prove consiscency in Machine Learning

» computationally tractable proofs of transcendental relations
and statisticals distributions

Future Work

» Optimize numerical algorithms for cryptographic primitives

» Try other ZKP frameworks: compare prover work - verifier
work - communication trade offs

» Plug our methods to Multiparty Computation frameworks
(e.g ABY3 [Mohassel and Rindal, 2018])

19/24

Thank you!

20/24

References |

E
Compressed $$\varSigma $$-Protocol Theory and Practical
Application to Plug & Play Secure Algorithmics.

Zerocash: Decentralized Anonymous Payments from
Bitcoin.

21/24

References Il

B
Coin flipping by telephone a protocol for solving impossible
problems.

Zether: Towards Privacy in a Smart Contract World.

Efficient Protocols for Set Membership and Range Proofs.

22/24

References ll|

B
Modular Design of Secure yet Practical Cryptographic
Protocols.

B
Differential Privacy.

B
Efficient Implementation of Pedersen Commitments Using
Twisted Edwards Curves.

23/24

References IV

Advances and Open Problems in Federated Learning.

24/24

References V

ABY3: A Mixed Protocol Framework for Machine Learning.

A unified algorithm for elementary functions.

25/24

	Introduction and Problem
	Existent tools
	Our solutions

