# Private Sampling with Malicious Samplers 

César Sabater

INRIA - Lille

October 27, 2021

Work supervised by Jan Ramon and improved by discussions with Andreas Peter (Univ. of Twente, Netherlands).

## Outline

# Introduction and Problem 

Existent tools

## Our solutions

## Outline

Introduction and Problem

## Existent tools

## Our solutions

## Context

- Privacy Preserving Machine Learning
- Many parties with sensitive data
- No trusted party to share this data


## Context

- Privacy Preserving Machine Learning
- Many parties with sensitive data
- No trusted party to share this data

Current Solutions

- Mostly imply decentralized computations (e.g. PP Federated Learning [Kairouz et al., 2019])
$\rightarrow$ Data storage and computations are locally private (e.g. held in devices)


## Context

- Privacy Preserving Machine Learning
- Many parties with sensitive data
- No trusted party to share this data

Current Solutions

- Mostly imply decentralized computations (e.g. PP Federated Learning [Kairouz et al., 2019])
$\rightarrow$ Data storage and computations are locally private (e.g. held in devices)

No control over the correctness of computations

## An Example

- Set of $P_{1}, \ldots, P_{s}$ of store owners
- Each $P_{i}$ has a private dataset $D_{i}$


## An Example

- Set of $P_{1}, \ldots, P_{s}$ of store owners
- Each $P_{i}$ has a private dataset $D_{i}$

Run a PP decentralized $\mathcal{A}\left(D_{1}, \ldots, D_{s}\right) \rightarrow \mathcal{M}$ to learn customer preferences

## An Example

- Set of $P_{1}, \ldots, P_{s}$ of store owners
- Each $P_{i}$ has a private dataset $D_{i}$

Run a PP decentralized $\mathcal{A}\left(D_{1}, \ldots, D_{s}\right) \rightarrow \mathcal{M}$ to learn customer preferences

A malicious $P_{j}$ can poison $\mathcal{M}$ to

- decrease customers of other stores
- increase its own profit


## Similar settings

Decentralized systems with untrusted participants

- financial systems [Ben Sasson et al., 2014]
- digital contracts contracts [Bünz et al., 2020]
- Provide privacy while proving consistency of payments


## Similar settings

Decentralized systems with untrusted participants

- financial systems [Ben Sasson et al., 2014]
- digital contracts contracts [Bünz et al., 2020]
- Provide privacy while proving consistency of payments

Commit and Prove

- Publish encrypted inputs (e.g. in a blockchain)
- Prove correctness over computations


## Similar settings

Decentralized systems with untrusted participants

- financial systems [Ben Sasson et al., 2014]
- digital contracts contracts [Bünz et al., 2020]
- Provide privacy while proving consistency of payments

Commit and Prove

- Publish encrypted inputs (e.g. in a blockchain)
- Prove correctness over computations

In our ML setting

- Input remains private, but consistent
- If a party lies, it has to lie repeatedly
- This also holds in non-private ML: not possible to ensure truth on the input


## Challenges

ML Computations

- Their domain is $\mathbb{R}$
$>$ Involve transcendental functions (e.g. $e^{x}, \ln (x), \ldots$ for activation filters)
- Sample numbers from Gaussian, Laplacian distributions (e.g. for Differential Privacy [Dwork, 2006])


## Challenges

ML Computations

- Their domain is $\mathbb{R}$
- Involve transcendental functions (e.g. $e^{x}, \ln (x), \ldots$ for activation filters)
- Sample numbers from Gaussian, Laplacian distributions (e.g. for Differential Privacy [Dwork, 2006])

The domain of proving frameworks is $\mathbb{Z}$ (or $\mathbb{Z}_{p}$, for some big prime p)

## Challenges

ML Computations

- Their domain is $\mathbb{R}$
- Involve transcendental functions (e.g. $e^{x}, \ln (x), \ldots$ for activation filters)
- Sample numbers from Gaussian, Laplacian distributions (e.g. for Differential Privacy [Dwork, 2006])

The domain of proving frameworks is $\mathbb{Z}$ (or $\mathbb{Z}_{p}$, for some big prime p)

## Challenges

ML Computations

- Their domain is $\mathbb{R}$
- Involve transcendental functions (e.g. $e^{x}, \ln (x), \ldots$ for activation filters)
- Sample numbers from Gaussian, Laplacian distributions (e.g. for Differential Privacy [Dwork, 2006])

The domain of proving frameworks is $\mathbb{Z}$ (or $\mathbb{Z}_{p}$, for some big prime $p$ )

Our contribution
We focus on sampling: prove that a private value $x$ is sampled from a distribution $\mathcal{D}$.

- But we also contribute in transcendental computations.


## Problem Statement

Let
> s malicious parties $P_{1}, \ldots, P_{s}$ that can tamper with the protocol.

- a well known distribution $\mathcal{D}$.

For some $i \in\{1, \ldots, s\}$, sample $x \in \mathbb{R}$ such that

1. $x \sim \mathcal{D}$
2. $x$ is private to $P_{i}$
if at least one party is honest.

## Problem Statement

Let

- s malicious parties $P_{1}, \ldots, P_{s}$ that can tamper with the protocol.
- a well known distribution $\mathcal{D}$.

For some $i \in\{1, \ldots, s\}$, sample $x \in \mathbb{R}$ such that

1. $x \sim \mathcal{D}$
2. $x$ is private to $P_{i}$
if at least one party is honest.
Example 2 Differentially Private Federated Learning
for $\mathrm{t}=1$ to T do
At each party $P_{i}$ : sample $\eta \sim \mathcal{D}$, compute $\Theta_{u}^{t} \leftarrow$ $\operatorname{LOcALUpDATE}\left(\Theta^{t-1}, \Theta_{u}^{t-1}\right)+\eta$ Compute $\Theta^{t} \leftarrow \frac{1}{n} \sum_{u} \hat{\Theta}_{u}^{t}$ end for

## Outline

## Introduction and Problem

Existent tools

## Our solutions

## Private Proofs

Commitments [Blum, 1983]
Commit to a value in $\mathbb{Z}_{p}$ while keeping it hidden

- Binding: the value cannot be changed once committed
- Similar to an encrypted value, but not neccesarily decryptable


## Private Proofs

Commitments [Blum, 1983]
Commit to a value in $\mathbb{Z}_{p}$ while keeping it hidden

- Binding: the value cannot be changed once committed
- Similar to an encrypted value, but not neccesarily decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]

- $x_{1}, \ldots, x_{n}$ committed values and $C: \mathbb{Z}_{p}^{m} \rightarrow \mathbb{Z}_{p}^{k}$ circuit (only modular + and $\times$ )
$\Longrightarrow$ can prove $C\left(x_{1}, \ldots, x_{n}\right)=\overline{0}$


## Private Proofs

Commitments [Blum, 1983]
Commit to a value in $\mathbb{Z}_{p}$ while keeping it hidden

- Binding: the value cannot be changed once committed
- Similar to an encrypted value, but not neccesarily decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]

- $x_{1}, \ldots, x_{n}$ committed values and $C: \mathbb{Z}_{p}^{m} \rightarrow \mathbb{Z}_{p}^{k}$ circuit (only modular + and $\times$ )
$\Longrightarrow$ can prove $C\left(x_{1}, \ldots, x_{n}\right)=\overline{0}$
$\vee$ can prove $S_{1}$ and $S_{2} \Longrightarrow$ can prove $S_{1} \vee S_{2}$


## Private Proofs

Commitments [Blum, 1983]
Commit to a value in $\mathbb{Z}_{p}$ while keeping it hidden

- Binding: the value cannot be changed once committed
- Similar to an encrypted value, but not neccesarily decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]

- $x_{1}, \ldots, x_{n}$ committed values and $C: \mathbb{Z}_{p}^{m} \rightarrow \mathbb{Z}_{p}^{k}$ circuit (only modular + and $\times$ )
$\Longrightarrow$ can prove $C\left(x_{1}, \ldots, x_{n}\right)=\overline{0}$
$\downarrow$ can prove $S_{1}$ and $S_{2} \Longrightarrow$ can prove $S_{1} \vee S_{2}$
- Cost: $O(C)$ and $O\left(\operatorname{cost}\left(S_{1}\right)+\operatorname{cost}\left(S_{2}\right)\right)$ for proving/verifying


## Private Proofs

Commitments [Blum, 1983]
Commit to a value in $\mathbb{Z}_{p}$ while keeping it hidden

- Binding: the value cannot be changed once committed
- Similar to an encrypted value, but not neccesarily decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]

- $x_{1}, \ldots, x_{n}$ committed values and $C: \mathbb{Z}_{p}^{m} \rightarrow \mathbb{Z}_{p}^{k}$ circuit (only modular + and $\times$ )
$\Longrightarrow$ can prove $C\left(x_{1}, \ldots, x_{n}\right)=\overline{0}$
$\downarrow$ can prove $S_{1}$ and $S_{2} \Longrightarrow$ can prove $S_{1} \vee S_{2}$
- Cost: $O(C)$ and $O\left(\operatorname{cost}\left(S_{1}\right)+\operatorname{cost}\left(S_{2}\right)\right)$ for proving/verifying

This is not FHE: We are just proving relations, not computing over encryptions

## Private Proofs: Examples

> $x=y: x-y=0$

## Private Proofs: Examples

> $x=y: x-y=0$
$\rightarrow b$ is a bit: $b(1-b)=0$

## Private Proofs: Examples

> $x=y: x-y=0$
$-b$ is a bit: $b(1-b)=0$
$\nabla x \in\left[0,2^{n}-1\right]: x-\sum_{i=1}^{n} 2^{i-1} b_{i}=0$ for $b_{1}, \ldots, b_{n}$ bits

## Private Proofs: Examples

> $x=y: x-y=0$
$\rightarrow b$ is a bit: $b(1-b)=0$
$\nabla x \in\left[0,2^{n}-1\right]: x-\sum_{i=1}^{n} 2^{i-1} b_{i}=0$ for $b_{1}, \ldots, b_{n}$ bits
$\checkmark$ Any polynomial relation in $\mathbb{Z}_{p}$

## Private Proofs: Examples

> $x=y: x-y=0$

- $b$ is a bit: $b(1-b)=0$
$>x \in\left[0,2^{n}-1\right]: x-\sum_{i=1}^{n} 2^{i-1} b_{i}=0$ for $b_{1}, \ldots, b_{n}$ bits
- Any polynomial relation in $\mathbb{Z}_{p}$
- If $x=A$ then $S_{1}$ else if $x=B$ then $S_{2}$ :
$\left(x-A=0 \wedge S_{1}\right) \vee\left(x-B=0 \wedge S_{2}\right)$


## Sampling in the clear

Generate $u_{1}, u_{2}, \ldots$ uniform seeds in $(0,1)$

## Sampling in the clear

Generate $u_{1}, u_{2}, \ldots$ uniform seeds in $(0,1)$
Arbitrary Distribution $\mathcal{D}$ Inversion method: $x \leftarrow C D F_{\mathcal{D}}^{-1}\left(u_{1}\right)$, if $C D F_{\mathcal{D}}^{-1}(x)$ is efficient

## Sampling in the clear

Generate $u_{1}, u_{2}, \ldots$ uniform seeds in $(0,1)$
Arbitrary Distribution $\mathcal{D}$ Inversion method: $x \leftarrow C D F_{\mathcal{D}}^{-1}\left(u_{1}\right)$, if $C D F_{\mathcal{D}}^{-1}(x)$ is efficient Gaussian Distribution

- Central Limit Theorem Approach: $x \leftarrow \frac{1}{k} \sum_{i=1}^{k} u_{i}$


## Sampling in the clear

Generate $u_{1}, u_{2}, \ldots$ uniform seeds in $(0,1)$
Arbitrary Distribution $\mathcal{D}$ Inversion method: $x \leftarrow C D F_{\mathcal{D}}^{-1}\left(u_{1}\right)$, if $C D F_{\mathcal{D}}^{-1}(x)$ is efficient Gaussian Distribution

- Central Limit Theorem Approach: $x \leftarrow \frac{1}{k} \sum_{i=1}^{k} u_{i}$
> Box Müller:

$$
\left\{\begin{array}{l}
x_{1} \leftarrow \sqrt{-2 \ln \left(u_{1}\right)} \sin \left(2 \pi u_{2}\right) \\
x_{2} \leftarrow \sqrt{-2 \ln \left(u_{1}\right)} \cos \left(2 \pi u_{2}\right)
\end{array}\right.
$$

## Sampling in the clear

Generate $u_{1}, u_{2}, \ldots$ uniform seeds in $(0,1)$
Arbitrary Distribution $\mathcal{D}$ Inversion method: $x \leftarrow C D F_{\mathcal{D}}^{-1}\left(u_{1}\right)$, if $C D F_{\mathcal{D}}^{-1}(x)$ is efficient
Gaussian Distribution

- Central Limit Theorem Approach: $x \leftarrow \frac{1}{k} \sum_{i=1}^{k} u_{i}$
> Box Müller:

$$
\left\{\begin{array}{l}
x_{1} \leftarrow \sqrt{-2 \ln \left(u_{1}\right)} \sin \left(2 \pi u_{2}\right) \\
x_{2} \leftarrow \sqrt{-2 \ln \left(u_{1}\right)} \cos \left(2 \pi u_{2}\right)
\end{array}\right.
$$

- Polar Method: $u_{1}, u_{2} \in(-1,1)$

$$
\begin{cases}\rho & \left.=u_{1}^{2}+u_{2}^{2} \quad \text { (if } \rho \geq 1 \text { or } \rho=0, \text { re-sample } u_{1}, u_{2}\right) \\ x_{1} & \leftarrow u_{1} \sqrt{-2 \ln (\rho) / \rho} \\ x_{2} & \leftarrow u_{2} \sqrt{-2 \ln (\rho) / \rho}\end{cases}
$$

## Outline

## Introduction and Problem

## Existent tools

## Our solutions

## Uniform Seeds

For $m \in \mathbb{N}$,

## Uniform Seeds

For $m \in \mathbb{N}$,

1. $P_{i}$ commits to a random $r \in[0, m)$

## Uniform Seeds

For $m \in \mathbb{N}$,

1. $P_{i}$ commits to a random $r \in[0, m)$
2. each party $P_{j}$ : commit to a random $r_{j} \in[0, m)$
3. each party $P_{j}$ : reveal $r_{j}$

## Uniform Seeds

For $m \in \mathbb{N}$,

1. $P_{i}$ commits to a random $r \in[0, m)$
2. each party $P_{j}$ : commit to a random $r_{j} \in[0, m)$
3. each party $P_{j}$ : reveal $r_{j}$
4. $P_{i}$ commit to $u$ and prove that $u=\left(r+\sum_{i=1}^{s} r_{i}\right) \bmod m$

## Uniform Seeds

For $m \in \mathbb{N}$,

1. $P_{i}$ commits to a random $r \in[0, m)$
2. each party $P_{j}$ : commit to a random $r_{j} \in[0, m)$
3. each party $P_{j}$ : reveal $r_{j}$
4. $P_{i}$ commit to $u$ and prove that $u=\left(r+\sum_{i=1}^{s} r_{i}\right) \bmod m$

We know that $u \sim \mathcal{U}\{0, \ldots, m-1\}$, but we don't know $u$.

## Uniform Seeds

For $m \in \mathbb{N}$,

1. $P_{i}$ commits to a random $r \in[0, m)$
2. each party $P_{j}$ : commit to a random $r_{j} \in[0, m)$
3. each party $P_{j}$ : reveal $r_{j}$
4. $P_{i}$ commit to $u$ and prove that $u=\left(r+\sum_{i=1}^{s} r_{i}\right) \bmod m$

We know that $u \sim \mathcal{U}\{0, \ldots, m-1\}$, but we don't know $u$.

Can amortize the generation of $s$ uniforms with cost $\mathrm{O}(1)$ per party.

## Proving Transcendental computations

Cryptographic Primitives for $\mathbb{R}$ (fixed-precision)

- Encode reals in $\mathbb{Z}$ (up to a certain fixed precision)
- Use integer proofs to implement computer operations: ,$+ \times$, bit-shift ( $\gg$ ), $\div$
- requires dealing with rounding issues


## Proving Transcendental computations

Cryptographic Primitives for $\mathbb{R}$ (fixed-precision)

- Encode reals in $\mathbb{Z}$ (up to a certain fixed precision)
- Use integer proofs to implement computer operations: ,$+ \times$, bit-shift ( $\gg$ ), $\div$
- requires dealing with rounding issues

Use numerical approximations
From computer operations can compute

- $\sin , \cos , \log , \boldsymbol{e}^{x}, \sqrt{x}$ with CORDIC algorithm [Walther, 1971] (mostly requires + and $\gg$ )
- Gaussian $C D F^{-1}(x)$ with rational functions and Taylor polynomials


## Proving Transcendental computations

Cryptographic Primitives for $\mathbb{R}$ (fixed-precision)

- Encode reals in $\mathbb{Z}$ (up to a certain fixed precision)
- Use integer proofs to implement computer operations: ,$+ \times$, bit-shift ( $\gg$ ), $\div$
- requires dealing with rounding issues

Use numerical approximations
From computer operations can compute

- $\sin , \cos , \log , \boldsymbol{e}^{x}, \sqrt{x}$ with CORDIC algorithm [Walther, 1971] (mostly requires + and $\gg$ )
- Gaussian $C D F^{-1}(x)$ with rational functions and Taylor polynomials
We prove their correct execution


## Preliminar results

Group Exponentiations (GExp) are the dominant computations

- Prove sin, cos, $\log , e^{x}, \sqrt{x}$ with $n$ bits of precision with $O\left(n^{2}\right)$ GExp (Of independent interest in ML)

Simulated Gaussian sampling proofs

- Central Limit Theorem Approach (CLT)
- Box Muller (BM) and Polar Method (PolM)
- Inversion Method (InvM) with Taylor and rational approximations


## Experiments

## Measured MSE wrt to a quality Gaussian ${ }^{1}$ over $10^{7}$ samples per method




[^0]
## Experiments

Measured MSE wrt to a quality Gaussian ${ }^{1}$ over $10^{7}$ samples per method



A quality sample requires $<3000$ GExp
$>\sim 0.17$ seconds in an Intel Core i7 ${ }^{2}$ (but largely optimizable)

[^1]
## Arbitrary Distributions: a sketch

Set Membership: Can prove $x \in S$ for private $x$ and public $S \subset \mathbb{Z}_{p}$ [Camenisch et al., 2008]

## Arbitrary Distributions: a sketch

Set Membership: Can prove $x \in S$ for private $x$ and public $S \subset \mathbb{Z}_{p}$ [Camenisch et al., 2008]
Inversion Method with table lookups (in the clear)

- Sample from $\mathcal{D}$ distribution from $2^{n}$ equiprobable bins
- Precompute $2^{n}$ points $t_{1}, \ldots, t_{2^{n}}$ of $C D F^{-1}$ in $(0,1)$
- Sample uniformly $u \in\left\{1, \ldots, 2^{n}\right\}$ and return the $u$-th point


## Arbitrary Distributions: a sketch

Set Membership: Can prove $x \in S$ for private $x$ and public $S \subset \mathbb{Z}_{p}$ [Camenisch et al., 2008]
Inversion Method with table lookups (in the clear)

- Sample from $\mathcal{D}$ distribution from $2^{n}$ equiprobable bins
- Precompute $2^{n}$ points $t_{1}, \ldots, t_{2^{n}}$ of $C D F^{-1}$ in $(0,1)$
- Sample uniformly $u \in\left\{1, \ldots, 2^{n}\right\}$ and return the $u$-th point

Private table lookups

- Let $D=\left\{\operatorname{enc}\left(1, t_{1}\right), \ldots, \operatorname{enc}\left(2^{n}, t_{2^{n}}\right)\right\}$ for some integer encoding enc
- $u \sim \mathcal{U}\left\{1, \ldots, 2^{n}\right\} \wedge \operatorname{enc}(u, x) \in D \Longrightarrow x \sim \mathcal{D}$


## Arbitrary Distributions: a sketch

Set Membership: Can prove $x \in S$ for private $x$ and public $S \subset \mathbb{Z}_{p}$ [Camenisch et al., 2008]
Inversion Method with table lookups (in the clear)

- Sample from $\mathcal{D}$ distribution from $2^{n}$ equiprobable bins
- Precompute $2^{n}$ points $t_{1}, \ldots, t_{2^{n}}$ of $C D F^{-1}$ in $(0,1)$
- Sample uniformly $u \in\left\{1, \ldots, 2^{n}\right\}$ and return the $u$-th point

Private table lookups

- Let $D=\left\{\operatorname{enc}\left(1, t_{1}\right), \ldots, \operatorname{enc}\left(2^{n}, t_{2^{n}}\right)\right\}$ for some integer encoding enc
$\triangleright u \sim \mathcal{U}\left\{1, \ldots, 2^{n}\right\} \wedge \operatorname{enc}(u, x) \in D \Longrightarrow x \sim \mathcal{D}$
$O$ (1) GExp per sample but $O\left(2^{n}\right)$ GExp of preprocessing (describing D)


## Conclusion

- new approach to prove consiscency in Machine Learning
- computationally tractable proofs of transcendental relations and statisticals distributions


## Conclusion

- new approach to prove consiscency in Machine Learning
- computationally tractable proofs of transcendental relations and statisticals distributions

Future Work

- Optimize numerical algorithms for cryptographic primitives
- Try other ZKP frameworks: compare prover work - verifier work - communication trade offs
- Plug our methods to Multiparty Computation frameworks (e.g ABY3 [Mohassel and Rindal, 2018])


## Thank you!

## References I

E. Attema, T. and Cramer, R. (2020).

Compressed \$\$IvarSigma \$\$-Protocol Theory and Practical Application to Plug \& Play Secure Algorithmics.

Cryptology - CRYPTO 2020, Lecture Notes in Computer
Science, pages 513-543, Cham. Springer International
Publishing,
E. Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., and Virza, M. (2014).

Zerocash: Decentralized Anonymous Payments from Bitcoin.


## References II

Eivin, M. (1983).
Coin flipping by telephone a protocol for solving impossible problems.

Ei Bünz, B., Agrawal, S., Zamani, M., and Boneh, D. (2020).
Zether: Towards Privacy in a Smart Contract World.
Cryptography and Data Security, Lecture Notes in Computer Science, pages 423-443, Cham. Springer International Publishing.
E. Camenisch, J., Chaabouni, R., and Shelat, A. (2008) Efficient Protocols for Set Membership and Range Proofs.

## References III

E. Cramer, R. (1997).

Modular Design of Secure yet Practical Cryptographic Protocols.
E. Dwork, C. (2006).

Differential Privacy.
E. Franck, C. and Großschädl, J. (2017).

Efficient Implementation of Pedersen Commitments Using Twisted Edwards Curves.


## References IV

E. Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., D'Oliveira, R. G. L., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B., Gibbons, P. B., Gruteser, M., Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konečný, J., Korolova, A., Koushanfar, F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh, R., Raykova, M., Qi, H., Ramage, D., Raskar, R., Song, D., Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr, F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu, H., and Zhao, S. (2019). Advances and Open Problems in Federated Learning. Technical report, arXiv:1912.04977.

## References V

E. Mohassel, P. and Rindal, P. (2018).

ABY3: A Mixed Protocol Framework for Machine Learning.

E Walther, J. S. (1971),
A unified algorithm for elementary functions.
In Proceedings of the May 18-20, 1971, spring joint computer conference, AFIPS '71 (Spring), pages 379-385, New York, NY, USA. Association for Computing Machinery.


[^0]:    ${ }^{1}$ Implemented with C++ boost library

[^1]:    ${ }^{1}$ Implemented with C++ boost library
    ${ }^{2}$ With the implementation by [Franck and Großschädl, 2017]

