
1/24

Private Sampling with Malicious Samplers

César Sabater

INRIA - Lille

October 27, 2021

Work supervised by Jan Ramon and improved by discussions
with Andreas Peter (Univ. of Twente, Netherlands).

2/24

Outline

Introduction and Problem

Existent tools

Our solutions

3/24

Outline

Introduction and Problem

Existent tools

Our solutions

4/24

Context

▶ Privacy Preserving Machine Learning
▶ Many parties with sensitive data
▶ No trusted party to share this data

Current Solutions
▶ Mostly imply decentralized computations (e.g. PP

Federated Learning [Kairouz et al., 2019])
▶ Data storage and computations are locally private (e.g.

held in devices)

No control over the correctness of computations

4/24

Context

▶ Privacy Preserving Machine Learning
▶ Many parties with sensitive data
▶ No trusted party to share this data

Current Solutions
▶ Mostly imply decentralized computations (e.g. PP

Federated Learning [Kairouz et al., 2019])
▶ Data storage and computations are locally private (e.g.

held in devices)

No control over the correctness of computations

4/24

Context

▶ Privacy Preserving Machine Learning
▶ Many parties with sensitive data
▶ No trusted party to share this data

Current Solutions
▶ Mostly imply decentralized computations (e.g. PP

Federated Learning [Kairouz et al., 2019])
▶ Data storage and computations are locally private (e.g.

held in devices)

No control over the correctness of computations

5/24

An Example

▶ Set of P1, . . . ,Ps of store owners
▶ Each Pi has a private dataset Di

Run a PP decentralized A(D1, . . . ,Ds)→M to learn customer
preferences

A malicious Pj can poisonM to
▶ decrease customers of other stores
▶ increase its own profit

5/24

An Example

▶ Set of P1, . . . ,Ps of store owners
▶ Each Pi has a private dataset Di

Run a PP decentralized A(D1, . . . ,Ds)→M to learn customer
preferences

A malicious Pj can poisonM to
▶ decrease customers of other stores
▶ increase its own profit

5/24

An Example

▶ Set of P1, . . . ,Ps of store owners
▶ Each Pi has a private dataset Di

Run a PP decentralized A(D1, . . . ,Ds)→M to learn customer
preferences

A malicious Pj can poisonM to
▶ decrease customers of other stores
▶ increase its own profit

6/24

Similar settings
Decentralized systems with untrusted participants
▶ financial systems [Ben Sasson et al., 2014]
▶ digital contracts contracts [Bünz et al., 2020]
▶ Provide privacy while proving consistency of payments

Commit and Prove
▶ Publish encrypted inputs (e.g. in a blockchain)
▶ Prove correctness over computations

In our ML setting
▶ Input remains private, but consistent
▶ If a party lies, it has to lie repeatedly
▶ This also holds in non-private ML: not possible to ensure

truth on the input

6/24

Similar settings
Decentralized systems with untrusted participants
▶ financial systems [Ben Sasson et al., 2014]
▶ digital contracts contracts [Bünz et al., 2020]
▶ Provide privacy while proving consistency of payments

Commit and Prove
▶ Publish encrypted inputs (e.g. in a blockchain)
▶ Prove correctness over computations

In our ML setting
▶ Input remains private, but consistent
▶ If a party lies, it has to lie repeatedly
▶ This also holds in non-private ML: not possible to ensure

truth on the input

6/24

Similar settings
Decentralized systems with untrusted participants
▶ financial systems [Ben Sasson et al., 2014]
▶ digital contracts contracts [Bünz et al., 2020]
▶ Provide privacy while proving consistency of payments

Commit and Prove
▶ Publish encrypted inputs (e.g. in a blockchain)
▶ Prove correctness over computations

In our ML setting
▶ Input remains private, but consistent
▶ If a party lies, it has to lie repeatedly
▶ This also holds in non-private ML: not possible to ensure

truth on the input

7/24

Challenges

ML Computations
▶ Their domain is R
▶ Involve transcendental functions (e.g. ex, ln(x), ... for

activation filters)
▶ Sample numbers from Gaussian, Laplacian distributions

(e.g. for Differential Privacy [Dwork, 2006])

The domain of proving frameworks is Z (or Zp, for some big
prime p)

Our contribution
We focus on sampling: prove that a private value x is
sampled from a distribution D.
- But we also contribute in transcendental computations.

7/24

Challenges

ML Computations
▶ Their domain is R
▶ Involve transcendental functions (e.g. ex, ln(x), ... for

activation filters)
▶ Sample numbers from Gaussian, Laplacian distributions

(e.g. for Differential Privacy [Dwork, 2006])
The domain of proving frameworks is Z (or Zp, for some big
prime p)

Our contribution
We focus on sampling: prove that a private value x is
sampled from a distribution D.
- But we also contribute in transcendental computations.

7/24

Challenges

ML Computations
▶ Their domain is R
▶ Involve transcendental functions (e.g. ex, ln(x), ... for

activation filters)
▶ Sample numbers from Gaussian, Laplacian distributions

(e.g. for Differential Privacy [Dwork, 2006])
The domain of proving frameworks is Z (or Zp, for some big
prime p)

Our contribution
We focus on sampling: prove that a private value x is
sampled from a distribution D.
- But we also contribute in transcendental computations.

7/24

Challenges

ML Computations
▶ Their domain is R
▶ Involve transcendental functions (e.g. ex, ln(x), ... for

activation filters)
▶ Sample numbers from Gaussian, Laplacian distributions

(e.g. for Differential Privacy [Dwork, 2006])
The domain of proving frameworks is Z (or Zp, for some big
prime p)

Our contribution
We focus on sampling: prove that a private value x is
sampled from a distribution D.
- But we also contribute in transcendental computations.

8/24

Problem Statement
Let
▶ s malicious parties P1, . . . ,Ps that can tamper with the

protocol.
▶ a well known distribution D.

For some i ∈ {1, . . . , s}, sample x ∈ R such that
1. x ∼ D
2. x is private to Pi

if at least one party is honest.

Example 1 Differentially Private Federated Learning
for t = 1 to T do

At each party Pi: sample η ∼ D, compute Θt
u ←

LocalUpdate(Θt−1,Θt−1
u)+η

Compute Θt ← 1
n
∑

u Θ̂
t
u

end for

8/24

Problem Statement
Let
▶ s malicious parties P1, . . . ,Ps that can tamper with the

protocol.
▶ a well known distribution D.

For some i ∈ {1, . . . , s}, sample x ∈ R such that
1. x ∼ D
2. x is private to Pi

if at least one party is honest.

Example 2 Differentially Private Federated Learning
for t = 1 to T do

At each party Pi: sample η ∼ D, compute Θt
u ←

LocalUpdate(Θt−1,Θt−1
u)+η

Compute Θt ← 1
n
∑

u Θ̂
t
u

end for

9/24

Outline

Introduction and Problem

Existent tools

Our solutions

10/24

Private Proofs
Commitments [Blum, 1983]
Commit to a value in Zp while keeping it hidden
▶ Binding: the value cannot be changed once committed
▶ Similar to an encrypted value, but not neccesarily

decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]
▶ x1, . . . , xn committed values and C : Zm

p → Zk
p circuit (only

modular + and ×)
=⇒ can prove C(x1, . . . , xn) = 0̄

▶ can prove S1 and S2 =⇒ can prove S1 ∨ S2

▶ Cost: O(C) and O(cost(S1)+ cost(S2)) for proving/verifying

This is not FHE: We are just proving relations, not computing
over encryptions

10/24

Private Proofs
Commitments [Blum, 1983]
Commit to a value in Zp while keeping it hidden
▶ Binding: the value cannot be changed once committed
▶ Similar to an encrypted value, but not neccesarily

decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]
▶ x1, . . . , xn committed values and C : Zm

p → Zk
p circuit (only

modular + and ×)
=⇒ can prove C(x1, . . . , xn) = 0̄

▶ can prove S1 and S2 =⇒ can prove S1 ∨ S2

▶ Cost: O(C) and O(cost(S1)+ cost(S2)) for proving/verifying

This is not FHE: We are just proving relations, not computing
over encryptions

10/24

Private Proofs
Commitments [Blum, 1983]
Commit to a value in Zp while keeping it hidden
▶ Binding: the value cannot be changed once committed
▶ Similar to an encrypted value, but not neccesarily

decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]
▶ x1, . . . , xn committed values and C : Zm

p → Zk
p circuit (only

modular + and ×)
=⇒ can prove C(x1, . . . , xn) = 0̄

▶ can prove S1 and S2 =⇒ can prove S1 ∨ S2

▶ Cost: O(C) and O(cost(S1)+ cost(S2)) for proving/verifying

This is not FHE: We are just proving relations, not computing
over encryptions

10/24

Private Proofs
Commitments [Blum, 1983]
Commit to a value in Zp while keeping it hidden
▶ Binding: the value cannot be changed once committed
▶ Similar to an encrypted value, but not neccesarily

decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]
▶ x1, . . . , xn committed values and C : Zm

p → Zk
p circuit (only

modular + and ×)
=⇒ can prove C(x1, . . . , xn) = 0̄

▶ can prove S1 and S2 =⇒ can prove S1 ∨ S2

▶ Cost: O(C) and O(cost(S1)+ cost(S2)) for proving/verifying

This is not FHE: We are just proving relations, not computing
over encryptions

10/24

Private Proofs
Commitments [Blum, 1983]
Commit to a value in Zp while keeping it hidden
▶ Binding: the value cannot be changed once committed
▶ Similar to an encrypted value, but not neccesarily

decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]
▶ x1, . . . , xn committed values and C : Zm

p → Zk
p circuit (only

modular + and ×)
=⇒ can prove C(x1, . . . , xn) = 0̄

▶ can prove S1 and S2 =⇒ can prove S1 ∨ S2

▶ Cost: O(C) and O(cost(S1)+ cost(S2)) for proving/verifying

This is not FHE: We are just proving relations, not computing
over encryptions

11/24

Private Proofs: Examples

▶ x = y: x− y = 0

▶ b is a bit: b(1− b) = 0

▶ x ∈ [0, 2n − 1]: x−
∑n

i=1 2
i−1bi = 0 for b1, . . . , bn bits

▶ Any polynomial relation in Zp
▶ If x = A then S1 else if x = B then S2:

(x− A = 0 ∧ S1) ∨ (x− B = 0 ∧ S2)

▶ ...

11/24

Private Proofs: Examples

▶ x = y: x− y = 0

▶ b is a bit: b(1− b) = 0

▶ x ∈ [0, 2n − 1]: x−
∑n

i=1 2
i−1bi = 0 for b1, . . . , bn bits

▶ Any polynomial relation in Zp
▶ If x = A then S1 else if x = B then S2:

(x− A = 0 ∧ S1) ∨ (x− B = 0 ∧ S2)

▶ ...

11/24

Private Proofs: Examples

▶ x = y: x− y = 0

▶ b is a bit: b(1− b) = 0

▶ x ∈ [0, 2n − 1]: x−
∑n

i=1 2
i−1bi = 0 for b1, . . . , bn bits

▶ Any polynomial relation in Zp
▶ If x = A then S1 else if x = B then S2:

(x− A = 0 ∧ S1) ∨ (x− B = 0 ∧ S2)

▶ ...

11/24

Private Proofs: Examples

▶ x = y: x− y = 0

▶ b is a bit: b(1− b) = 0

▶ x ∈ [0, 2n − 1]: x−
∑n

i=1 2
i−1bi = 0 for b1, . . . , bn bits

▶ Any polynomial relation in Zp

▶ If x = A then S1 else if x = B then S2:
(x− A = 0 ∧ S1) ∨ (x− B = 0 ∧ S2)

▶ ...

11/24

Private Proofs: Examples

▶ x = y: x− y = 0

▶ b is a bit: b(1− b) = 0

▶ x ∈ [0, 2n − 1]: x−
∑n

i=1 2
i−1bi = 0 for b1, . . . , bn bits

▶ Any polynomial relation in Zp
▶ If x = A then S1 else if x = B then S2:

(x− A = 0 ∧ S1) ∨ (x− B = 0 ∧ S2)

▶ ...

12/24

Sampling in the clear
Generate u1,u2, . . . uniform seeds in (0, 1)

Arbitrary Distribution D
Inversion method: x← CDF−1

D (u1), if CDF−1
D (x) is efficient

Gaussian Distribution
▶ Central Limit Theorem Approach: x← 1

k
∑k

i=1 ui

▶ Box Müller: {
x1 ←

√
−2 ln(u1) sin(2πu2)

x2 ←
√
−2 ln(u1) cos(2πu2)

▶ Polar Method: u1,u2 ∈ (−1, 1)
ρ = u2

1 + u2
2 (if ρ ≥ 1 or ρ = 0, re-sample u1,u2)

x1 ← u1

√
−2 ln(ρ)/ρ

x2 ← u2

√
−2 ln(ρ)/ρ

12/24

Sampling in the clear
Generate u1,u2, . . . uniform seeds in (0, 1)

Arbitrary Distribution D
Inversion method: x← CDF−1

D (u1), if CDF−1
D (x) is efficient

Gaussian Distribution
▶ Central Limit Theorem Approach: x← 1

k
∑k

i=1 ui

▶ Box Müller: {
x1 ←

√
−2 ln(u1) sin(2πu2)

x2 ←
√
−2 ln(u1) cos(2πu2)

▶ Polar Method: u1,u2 ∈ (−1, 1)
ρ = u2

1 + u2
2 (if ρ ≥ 1 or ρ = 0, re-sample u1,u2)

x1 ← u1

√
−2 ln(ρ)/ρ

x2 ← u2

√
−2 ln(ρ)/ρ

12/24

Sampling in the clear
Generate u1,u2, . . . uniform seeds in (0, 1)

Arbitrary Distribution D
Inversion method: x← CDF−1

D (u1), if CDF−1
D (x) is efficient

Gaussian Distribution
▶ Central Limit Theorem Approach: x← 1

k
∑k

i=1 ui

▶ Box Müller: {
x1 ←

√
−2 ln(u1) sin(2πu2)

x2 ←
√
−2 ln(u1) cos(2πu2)

▶ Polar Method: u1,u2 ∈ (−1, 1)
ρ = u2

1 + u2
2 (if ρ ≥ 1 or ρ = 0, re-sample u1,u2)

x1 ← u1

√
−2 ln(ρ)/ρ

x2 ← u2

√
−2 ln(ρ)/ρ

12/24

Sampling in the clear
Generate u1,u2, . . . uniform seeds in (0, 1)

Arbitrary Distribution D
Inversion method: x← CDF−1

D (u1), if CDF−1
D (x) is efficient

Gaussian Distribution
▶ Central Limit Theorem Approach: x← 1

k
∑k

i=1 ui
▶ Box Müller: {

x1 ←
√
−2 ln(u1) sin(2πu2)

x2 ←
√
−2 ln(u1) cos(2πu2)

▶ Polar Method: u1,u2 ∈ (−1, 1)
ρ = u2

1 + u2
2 (if ρ ≥ 1 or ρ = 0, re-sample u1,u2)

x1 ← u1

√
−2 ln(ρ)/ρ

x2 ← u2

√
−2 ln(ρ)/ρ

12/24

Sampling in the clear
Generate u1,u2, . . . uniform seeds in (0, 1)

Arbitrary Distribution D
Inversion method: x← CDF−1

D (u1), if CDF−1
D (x) is efficient

Gaussian Distribution
▶ Central Limit Theorem Approach: x← 1

k
∑k

i=1 ui
▶ Box Müller: {

x1 ←
√
−2 ln(u1) sin(2πu2)

x2 ←
√
−2 ln(u1) cos(2πu2)

▶ Polar Method: u1,u2 ∈ (−1, 1)
ρ = u2

1 + u2
2 (if ρ ≥ 1 or ρ = 0, re-sample u1,u2)

x1 ← u1

√
−2 ln(ρ)/ρ

x2 ← u2

√
−2 ln(ρ)/ρ

13/24

Outline

Introduction and Problem

Existent tools

Our solutions

14/24

Uniform Seeds

For m ∈ N,

1. Pi commits to a random r ∈ [0,m)

2. each party Pj: commit to a random rj ∈ [0,m)

3. each party Pj: reveal rj

4. Pi commit to u and prove that u =
(
r +

∑s
i=1 ri

)
mod m

We know that u ∼ U{0, . . . ,m− 1}, but we don’t know u.

Can amortize the generation of s uniforms with cost O(1) per
party.

14/24

Uniform Seeds

For m ∈ N,
1. Pi commits to a random r ∈ [0,m)

2. each party Pj: commit to a random rj ∈ [0,m)

3. each party Pj: reveal rj

4. Pi commit to u and prove that u =
(
r +

∑s
i=1 ri

)
mod m

We know that u ∼ U{0, . . . ,m− 1}, but we don’t know u.

Can amortize the generation of s uniforms with cost O(1) per
party.

14/24

Uniform Seeds

For m ∈ N,
1. Pi commits to a random r ∈ [0,m)

2. each party Pj: commit to a random rj ∈ [0,m)

3. each party Pj: reveal rj

4. Pi commit to u and prove that u =
(
r +

∑s
i=1 ri

)
mod m

We know that u ∼ U{0, . . . ,m− 1}, but we don’t know u.

Can amortize the generation of s uniforms with cost O(1) per
party.

14/24

Uniform Seeds

For m ∈ N,
1. Pi commits to a random r ∈ [0,m)

2. each party Pj: commit to a random rj ∈ [0,m)

3. each party Pj: reveal rj

4. Pi commit to u and prove that u =
(
r +

∑s
i=1 ri

)
mod m

We know that u ∼ U{0, . . . ,m− 1}, but we don’t know u.

Can amortize the generation of s uniforms with cost O(1) per
party.

14/24

Uniform Seeds

For m ∈ N,
1. Pi commits to a random r ∈ [0,m)

2. each party Pj: commit to a random rj ∈ [0,m)

3. each party Pj: reveal rj

4. Pi commit to u and prove that u =
(
r +

∑s
i=1 ri

)
mod m

We know that u ∼ U{0, . . . ,m− 1}, but we don’t know u.

Can amortize the generation of s uniforms with cost O(1) per
party.

14/24

Uniform Seeds

For m ∈ N,
1. Pi commits to a random r ∈ [0,m)

2. each party Pj: commit to a random rj ∈ [0,m)

3. each party Pj: reveal rj

4. Pi commit to u and prove that u =
(
r +

∑s
i=1 ri

)
mod m

We know that u ∼ U{0, . . . ,m− 1}, but we don’t know u.

Can amortize the generation of s uniforms with cost O(1) per
party.

15/24

Proving Transcendental computations

Cryptographic Primitives for R (fixed-precision)
▶ Encode reals in Z (up to a certain fixed precision)
▶ Use integer proofs to implement computer operations:

+,×, bit-shift (>>), ÷
▶ requires dealing with rounding issues

Use numerical approximations
From computer operations can compute
▶ sin, cos, log,ex,

√
x with CORDIC algorithm [Walther, 1971]

(mostly requires + and >>)
▶ Gaussian CDF−1(x) with rational functions and Taylor

polynomials

We prove their correct execution

15/24

Proving Transcendental computations

Cryptographic Primitives for R (fixed-precision)
▶ Encode reals in Z (up to a certain fixed precision)
▶ Use integer proofs to implement computer operations:

+,×, bit-shift (>>), ÷
▶ requires dealing with rounding issues

Use numerical approximations
From computer operations can compute
▶ sin, cos, log,ex,

√
x with CORDIC algorithm [Walther, 1971]

(mostly requires + and >>)
▶ Gaussian CDF−1(x) with rational functions and Taylor

polynomials

We prove their correct execution

15/24

Proving Transcendental computations

Cryptographic Primitives for R (fixed-precision)
▶ Encode reals in Z (up to a certain fixed precision)
▶ Use integer proofs to implement computer operations:

+,×, bit-shift (>>), ÷
▶ requires dealing with rounding issues

Use numerical approximations
From computer operations can compute
▶ sin, cos, log,ex,

√
x with CORDIC algorithm [Walther, 1971]

(mostly requires + and >>)
▶ Gaussian CDF−1(x) with rational functions and Taylor

polynomials
We prove their correct execution

16/24

Preliminar results

Group Exponentiations (GExp) are the dominant computations

▶ Prove sin, cos, log, ex,
√

x with n bits of precision with O(n2)
GExp
(Of independent interest in ML)

Simulated Gaussian sampling proofs
▶ Central Limit Theorem Approach (CLT)
▶ Box Muller (BM) and Polar Method (PolM)
▶ Inversion Method (InvM) with Taylor and rational

approximations

17/24

Experiments
Measured MSE wrt to a quality Gaussian 1 over 107 samples
per method

0 10000 20000 30000 40000
Group Exponentiations

10 6

10 5

10 4

10 3

10 2

10 1

100

M
ea

n
Sq

ua
re

d
Er

ro
r

BM
PolM
CLT
InvM - Taylor
InvM - Rational

0 1000 2000 3000 4000 5000
Group Exponentiations

10 6

10 5

10 4

10 3

10 2

10 1

M
ea

n
Sq

ua
re

d
Er

ro
r

BM
PolM
CLT

A quality sample requires < 3000 GExp
▶ ∼ 0.17 seconds in an Intel Core i7 2 (but largely

optimizable)

1Implemented with C++ boost library
2

With the implementation by [Franck and Großschädl, 2017]

17/24

Experiments
Measured MSE wrt to a quality Gaussian 1 over 107 samples
per method

0 10000 20000 30000 40000
Group Exponentiations

10 6

10 5

10 4

10 3

10 2

10 1

100

M
ea

n
Sq

ua
re

d
Er

ro
r

BM
PolM
CLT
InvM - Taylor
InvM - Rational

0 1000 2000 3000 4000 5000
Group Exponentiations

10 6

10 5

10 4

10 3

10 2

10 1

M
ea

n
Sq

ua
re

d
Er

ro
r

BM
PolM
CLT

A quality sample requires < 3000 GExp
▶ ∼ 0.17 seconds in an Intel Core i7 2 (but largely

optimizable)

1Implemented with C++ boost library
2With the implementation by [Franck and Großschädl, 2017]

18/24

Arbitrary Distributions: a sketch
Set Membership: Can prove x ∈ S for private x and public
S ⊂ Zp [Camenisch et al., 2008]

Inversion Method with table lookups (in the clear)
▶ Sample from D distribution from 2n equiprobable bins
▶ Precompute 2n points t1, . . . , t2n of CDF−1 in (0, 1)

▶ Sample uniformly u ∈ {1, . . . , 2n} and return the u-th point

Private table lookups
▶ Let D = {enc(1, t1), . . . , enc(2n, t2n)} for some integer

encoding enc
▶ u ∼ U{1, . . . , 2n} ∧ enc(u, x) ∈ D =⇒ x ∼ D

O(1) GExp per sample but O(2n) GExp of preprocessing
(describing D)

18/24

Arbitrary Distributions: a sketch
Set Membership: Can prove x ∈ S for private x and public
S ⊂ Zp [Camenisch et al., 2008]
Inversion Method with table lookups (in the clear)
▶ Sample from D distribution from 2n equiprobable bins
▶ Precompute 2n points t1, . . . , t2n of CDF−1 in (0, 1)

▶ Sample uniformly u ∈ {1, . . . , 2n} and return the u-th point

Private table lookups
▶ Let D = {enc(1, t1), . . . , enc(2n, t2n)} for some integer

encoding enc
▶ u ∼ U{1, . . . , 2n} ∧ enc(u, x) ∈ D =⇒ x ∼ D

O(1) GExp per sample but O(2n) GExp of preprocessing
(describing D)

18/24

Arbitrary Distributions: a sketch
Set Membership: Can prove x ∈ S for private x and public
S ⊂ Zp [Camenisch et al., 2008]
Inversion Method with table lookups (in the clear)
▶ Sample from D distribution from 2n equiprobable bins
▶ Precompute 2n points t1, . . . , t2n of CDF−1 in (0, 1)

▶ Sample uniformly u ∈ {1, . . . , 2n} and return the u-th point

Private table lookups
▶ Let D = {enc(1, t1), . . . , enc(2n, t2n)} for some integer

encoding enc
▶ u ∼ U{1, . . . , 2n} ∧ enc(u, x) ∈ D =⇒ x ∼ D

O(1) GExp per sample but O(2n) GExp of preprocessing
(describing D)

18/24

Arbitrary Distributions: a sketch
Set Membership: Can prove x ∈ S for private x and public
S ⊂ Zp [Camenisch et al., 2008]
Inversion Method with table lookups (in the clear)
▶ Sample from D distribution from 2n equiprobable bins
▶ Precompute 2n points t1, . . . , t2n of CDF−1 in (0, 1)

▶ Sample uniformly u ∈ {1, . . . , 2n} and return the u-th point

Private table lookups
▶ Let D = {enc(1, t1), . . . , enc(2n, t2n)} for some integer

encoding enc
▶ u ∼ U{1, . . . , 2n} ∧ enc(u, x) ∈ D =⇒ x ∼ D

O(1) GExp per sample but O(2n) GExp of preprocessing
(describing D)

19/24

Conclusion

▶ new approach to prove consiscency in Machine Learning
▶ computationally tractable proofs of transcendental relations

and statisticals distributions

Future Work
▶ Optimize numerical algorithms for cryptographic primitives
▶ Try other ZKP frameworks: compare prover work - verifier

work - communication trade offs
▶ Plug our methods to Multiparty Computation frameworks

(e.g ABY3 [Mohassel and Rindal, 2018])

19/24

Conclusion

▶ new approach to prove consiscency in Machine Learning
▶ computationally tractable proofs of transcendental relations

and statisticals distributions

Future Work
▶ Optimize numerical algorithms for cryptographic primitives
▶ Try other ZKP frameworks: compare prover work - verifier

work - communication trade offs
▶ Plug our methods to Multiparty Computation frameworks

(e.g ABY3 [Mohassel and Rindal, 2018])

20/24

Thank you!

21/24

References I

Attema, T. and Cramer, R. (2020).
Compressed $$\varSigma $$-Protocol Theory and Practical
Application to Plug & Play Secure Algorithmics.
In Micciancio, D. and Ristenpart, T., editors, Advances in
Cryptology – CRYPTO 2020, Lecture Notes in Computer
Science, pages 513–543, Cham. Springer International
Publishing.

Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers,
I., Tromer, E., and Virza, M. (2014).
Zerocash: Decentralized Anonymous Payments from
Bitcoin.
In 2014 IEEE Symposium on Security and Privacy, pages
459–474.
ISSN: 2375-1207.

22/24

References II

Blum, M. (1983).
Coin flipping by telephone a protocol for solving impossible
problems.
ACM SIGACT News, 15(1):23–27.

Bünz, B., Agrawal, S., Zamani, M., and Boneh, D. (2020).
Zether: Towards Privacy in a Smart Contract World.
In Bonneau, J. and Heninger, N., editors, Financial
Cryptography and Data Security, Lecture Notes in
Computer Science, pages 423–443, Cham. Springer
International Publishing.

Camenisch, J., Chaabouni, R., and Shelat, A. (2008).
Efficient Protocols for Set Membership and Range Proofs.
In ASIACRYPT.

23/24

References III

Cramer, R. (1997).
Modular Design of Secure yet Practical Cryptographic
Protocols.
PhD thesis, University of Amsterdam.

Dwork, C. (2006).
Differential Privacy.
In ICALP.
Franck, C. and Großschädl, J. (2017).
Efficient Implementation of Pedersen Commitments Using
Twisted Edwards Curves.
In Bouzefrane, S., Banerjee, S., Sailhan, F., Boumerdassi,
S., and Renault, E., editors, Mobile, Secure, and
Programmable Networking, volume 10566, pages 1–17.
Springer International Publishing, Cham.
Series Title: Lecture Notes in Computer Science.

24/24

References IV

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G.,
Cummings, R., D’Oliveira, R. G. L., Rouayheb, S. E.,
Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B.,
Gibbons, P. B., Gruteser, M., Harchaoui, Z., He, C., He, L.,
Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi, T., Joshi,
G., Khodak, M., Konečný, J., Korolova, A., Koushanfar, F.,
Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock,
R., Özgür, A., Pagh, R., Raykova, M., Qi, H., Ramage, D.,
Raskar, R., Song, D., Song, W., Stich, S. U., Sun, Z.,
Suresh, A. T., Tramèr, F., Vepakomma, P., Wang, J., Xiong,
L., Xu, Z., Yang, Q., Yu, F. X., Yu, H., and Zhao, S. (2019).
Advances and Open Problems in Federated Learning.
Technical report, arXiv:1912.04977.

25/24

References V

Mohassel, P. and Rindal, P. (2018).
ABY3: A Mixed Protocol Framework for Machine Learning.
Technical Report 403.

Walther, J. S. (1971).
A unified algorithm for elementary functions.
In Proceedings of the May 18-20, 1971, spring joint
computer conference, AFIPS ’71 (Spring), pages 379–385,
New York, NY, USA. Association for Computing Machinery.

	Introduction and Problem
	Existent tools
	Our solutions

