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Context

▶ Privacy Preserving Machine Learning
▶ Many parties with sensitive data
▶ No trusted party to share this data

Current Solutions
▶ Mostly imply decentralized computations (e.g. PP

Federated Learning [Kairouz et al., 2019])
▶ Data storage and computations are locally private (e.g.

held in devices)

No control over the correctness of computations
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An Example

▶ Set of P1, . . . ,Ps of store owners
▶ Each Pi has a private dataset Di

Run a PP decentralized A(D1, . . . ,Ds)→M to learn customer
preferences

A malicious Pj can poisonM to
▶ decrease customers of other stores
▶ increase its own profit
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Similar settings
Decentralized systems with untrusted participants
▶ financial systems [Ben Sasson et al., 2014]
▶ digital contracts contracts [Bünz et al., 2020]
▶ Provide privacy while proving consistency of payments

Commit and Prove
▶ Publish encrypted inputs (e.g. in a blockchain)
▶ Prove correctness over computations

In our ML setting
▶ Input remains private, but consistent
▶ If a party lies, it has to lie repeatedly
▶ This also holds in non-private ML: not possible to ensure

truth on the input
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Challenges

ML Computations
▶ Their domain is R
▶ Involve transcendental functions (e.g. ex, ln(x), ... for

activation filters)
▶ Sample numbers from Gaussian, Laplacian distributions

(e.g. for Differential Privacy [Dwork, 2006])

The domain of proving frameworks is Z (or Zp, for some big
prime p)

Our contribution
We focus on sampling: prove that a private value x is
sampled from a distribution D.
- But we also contribute in transcendental computations.
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Problem Statement
Let
▶ s malicious parties P1, . . . ,Ps that can tamper with the

protocol.
▶ a well known distribution D.

For some i ∈ {1, . . . , s}, sample x ∈ R such that
1. x ∼ D
2. x is private to Pi

if at least one party is honest.

Example 1 Differentially Private Federated Learning
for t = 1 to T do

At each party Pi: sample η ∼ D, compute Θt
u ←

LocalUpdate(Θt−1,Θt−1
u )+η

Compute Θt ← 1
n
∑

u Θ̂
t
u

end for
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Private Proofs
Commitments [Blum, 1983]
Commit to a value in Zp while keeping it hidden
▶ Binding: the value cannot be changed once committed
▶ Similar to an encrypted value, but not neccesarily

decryptable

Zero Knowledge Proofs
[Cramer, 1997, Attema and Cramer, 2020]
▶ x1, . . . , xn committed values and C : Zm

p → Zk
p circuit (only

modular + and ×)
=⇒ can prove C(x1, . . . , xn) = 0̄

▶ can prove S1 and S2 =⇒ can prove S1 ∨ S2

▶ Cost: O(C) and O(cost(S1)+ cost(S2)) for proving/verifying

This is not FHE: We are just proving relations, not computing
over encryptions
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Private Proofs: Examples

▶ x = y: x− y = 0

▶ b is a bit: b(1− b) = 0

▶ x ∈ [0, 2n − 1]: x−
∑n

i=1 2
i−1bi = 0 for b1, . . . , bn bits

▶ Any polynomial relation in Zp
▶ If x = A then S1 else if x = B then S2:

(x− A = 0 ∧ S1) ∨ (x− B = 0 ∧ S2)

▶ ...
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Sampling in the clear
Generate u1,u2, . . . uniform seeds in (0, 1)

Arbitrary Distribution D
Inversion method: x← CDF−1

D (u1), if CDF−1
D (x) is efficient

Gaussian Distribution
▶ Central Limit Theorem Approach: x← 1

k
∑k

i=1 ui

▶ Box Müller: {
x1 ←

√
−2 ln(u1) sin(2πu2)

x2 ←
√
−2 ln(u1) cos(2πu2)

▶ Polar Method: u1,u2 ∈ (−1, 1)
ρ = u2

1 + u2
2 (if ρ ≥ 1 or ρ = 0, re-sample u1,u2)

x1 ← u1

√
−2 ln(ρ)/ρ

x2 ← u2

√
−2 ln(ρ)/ρ
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Uniform Seeds

For m ∈ N,

1. Pi commits to a random r ∈ [0,m)

2. each party Pj: commit to a random rj ∈ [0,m)

3. each party Pj: reveal rj

4. Pi commit to u and prove that u =
(
r +

∑s
i=1 ri

)
mod m

We know that u ∼ U{0, . . . ,m− 1}, but we don’t know u.

Can amortize the generation of s uniforms with cost O(1) per
party.
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Proving Transcendental computations

Cryptographic Primitives for R (fixed-precision)
▶ Encode reals in Z (up to a certain fixed precision)
▶ Use integer proofs to implement computer operations:

+,×, bit-shift (>>), ÷
▶ requires dealing with rounding issues

Use numerical approximations
From computer operations can compute
▶ sin, cos, log,ex,

√
x with CORDIC algorithm [Walther, 1971]

(mostly requires + and >>)
▶ Gaussian CDF−1(x) with rational functions and Taylor

polynomials

We prove their correct execution
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Preliminar results

Group Exponentiations (GExp) are the dominant computations

▶ Prove sin, cos, log, ex,
√

x with n bits of precision with O(n2)
GExp
(Of independent interest in ML)

Simulated Gaussian sampling proofs
▶ Central Limit Theorem Approach (CLT)
▶ Box Muller (BM) and Polar Method (PolM)
▶ Inversion Method (InvM) with Taylor and rational

approximations
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Experiments
Measured MSE wrt to a quality Gaussian 1 over 107 samples
per method
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A quality sample requires < 3000 GExp
▶ ∼ 0.17 seconds in an Intel Core i7 2 (but largely

optimizable)

1Implemented with C++ boost library
2

With the implementation by [Franck and Großschädl, 2017]
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Arbitrary Distributions: a sketch
Set Membership: Can prove x ∈ S for private x and public
S ⊂ Zp [Camenisch et al., 2008]

Inversion Method with table lookups (in the clear)
▶ Sample from D distribution from 2n equiprobable bins
▶ Precompute 2n points t1, . . . , t2n of CDF−1 in (0, 1)

▶ Sample uniformly u ∈ {1, . . . , 2n} and return the u-th point

Private table lookups
▶ Let D = {enc(1, t1), . . . , enc(2n, t2n)} for some integer

encoding enc
▶ u ∼ U{1, . . . , 2n} ∧ enc(u, x) ∈ D =⇒ x ∼ D

O(1) GExp per sample but O(2n) GExp of preprocessing
(describing D)
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Conclusion

▶ new approach to prove consiscency in Machine Learning
▶ computationally tractable proofs of transcendental relations

and statisticals distributions

Future Work
▶ Optimize numerical algorithms for cryptographic primitives
▶ Try other ZKP frameworks: compare prover work - verifier

work - communication trade offs
▶ Plug our methods to Multiparty Computation frameworks

(e.g ABY3 [Mohassel and Rindal, 2018])
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