
ANR-PMR Health PPML workshop
Towards a hospital-friendly communication module

Marc DAMIE

Wednesday 27th October 2021

1. Context and motivations
2. Communication design

3. Technical solutions

4. Few recommendations

Who am I?

• Computer engineer (graduated from UTC, Compiègne) specialized in Data
Mining/Engineering but with professional experience in cybersec.

• This presentation exposes few of the results of the internship I did at Inria
(Decentralized Secure Privacy-Preserving Surveying for Mobile Devices)

• Currently: PhD student between Inria Lille (Magnet) & University of Twente
(Services, Cybersecurity and Safety group)

3

Tailed library

• Tailed: Trustworthy AI Library for Environments which are Decentralized

• Goal: develop a cross-platform framework to deploy federated learning
with user trust: learning contracts, verifiability, auditability, etc.

• Communication module studied in the context of Tailed

• ⇒ we present our conclusions but no strong claims

4

Quick vocabulary overview: roles in PPML protocols

5

Motivations

• General goal: make the communication technically possible between all the
agents involved in a PPML protocol [not studied in the ML community]

• Particular focus: have a hospital-friendly communication system

• ⇒ constraints: possibly restrictive firewalls, minimize the permissions
needed, avoid deploying something in their DMZ, minimize the
setup/configuration cost, not only Linux servers, etc.

• Perspectives: build an OS-independent solution. Windows for hospitals but
also Android and iOS to work on projects involving mobile users

6

Communication requirements

7

1. Context and motivations

2. Communication design

3. Technical solutions

4. Few recommendations

Communication centralization

• Everything cannot be addressed easily via decentralization: identity
authority, public bulletin (e.g. to publish learning tasks), etc.

• Distributed ledgers, XMPP, etc. interesting but ... messaging server = less
costly and easier deployment (i.e. doesn’t require n independent nodes)

• Centralization⇏ Trusted server (public keys, gossip, etc.)

• Communication centralization⇏ Learning centralization

9

P2P limitations

• 1. Cost: requires some communications to set up a P2P channel⇒ not
worth it to set up a channel for only one message

• 2. Trust model: P2P protocols such as WebRTC require a central server to set
up the communication⇒ if the server is not trusted, requires public key
infrastructure (PKI)

• P2P advantage: secure/private against honest-but-curious adversary

• Both P2P and centralized communications require a PKI to be secure
against malicious server

10

Communication paradigm: request-response vs. bidirectional

11

1. Context and motivations

2. Communication design

3. Technical solutions
4. Few recommendations

Overview of communication protocols

• We will present and compare the following protocols: HTTP polling,
Server-sent events, sockets, WebSockets and HTTP2

• Focus on popular and widely implemented client-server protocols

13

Comparison of the communication protocols: the veterans

• HTTP polling | Pros: compliant with any kind of (client) security policies |
Cons: not very optimized

• HTTP long polling | Pros: compliant with any kind of (client) security policies
| Cons: not very optimized and quite ”dirty”

• Server-sent events | Pros: compliant with old systems | Cons: outdated AND
only allows server to client messages (⇒ should be combined with HTTP)

• Socket communication | Pros: tailor-made solution | Cons: very complex to
implement (+ security risks!)

14

Comparison of the communication protocols: the newcomers

• WebSockets | Pros: real-time bidirectional communication, available in most
of the major web frameworks | Cons: no major WebSockets-specific
framework has survived over time⇒ no guidelines to use it properly

• HTTP2 (+ gRPC) | Pros: allows request-response as well as bidirectional
communication (≈ HTTP1 + WS), gRPC is a rich framework | Cons: younger
(⇒ less supported for now)

• Summary: for convenience purpose, HTTP2 (or WebSockets) seems to be a
natural choice. For maximum compliance, HTTP polling is interesting.

15

Introduction to asynchronous programming

• Motivation: optimize waiting times by creating a sort of concurrency in the
execution while avoiding the cost of massive multithreading.

• Useful in network (especially bidirec. comm.) and file system interactions.

• Async-await paradigm: has a synchronous-like structure with simply ”await”
keyword before blocking statements. For example: await server.connect()

• Async-await available in: C#, Python, JavaScript, Nim, Rust, C++20, etc.

• Even it looks like sync code, it requires designing differently the programs
because of concurrency: events won’t always happen in an expected order

16

1. Context and motivations

2. Communication design

3. Technical solutions

4. Few recommendations

How to choose a library?

• Quality: maturity, reputation, SSL support, Autobahn test result for
WebSockets lib, etc.

• Convenience: how quick and easy will be the coding? Is there a framework?
(protocol implementation ̸= framework)

• Performances: TechEmpower Framework Benchmarks. Perf.-convenience
trade-off⇒ 1M req/sec is cool but not useful to everyone

• Number of protocols supported.

• Only choose a protocol if it has a good library in your language⇒ good
theoretical properties are not enough!

18

https://www.techempower.com/benchmarks/

Security considerations

• SSL/TLS: the fundamentalmust-have (reminder: prevents eavesdropping)

• Firewall policies: some hospitals could filter protocols such as WebSockets.
Minimum risk is obviously HTTP. HTTP2/gRPC could be preferred by some
hospitals compared to WebSockets.

• Message encryption: SSL is not sufficient⇒ find an adequate PKI to encrypt
agent-to-agent messages

19

Concluding thoughts

• Prefer using only one communication server: more optimized and an easier
(and more realistic) deployment especially for scenarios involving hospitals

• Prefer supporting several comm. protocols: WebSockets, gRPC, HTTP polling
⇒ compliant with ”any” firewall.

• Under development: OS-independent communication module creating an
abstraction of the protocol APIs⇒ user can focus her attention on the ML

• Studied only the communication level, but there are other open questions:
cryptography, identity, scalability, etc. ⇒ will be explored during my PhD

20

Questions?

	Context and motivations
	Communication design
	Technical solutions
	Few recommendations

