
Private Averaging with Untrusted Parties

César Sabater

June 24th, 2022

ANR PMR Workshop
Joint work with Aurélien Bellet and Jan Ramon

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

1 / 34

Introduction

Privacy

GOssip noise for Private Averaging

Conclusion

2 / 34

Centralized Machine Learning

I Machine Learning (ML) offers solutions in domains such as
machine vision, natural language processing, medical research

I It requires large amounts of data

I Data often belongs to individuals or organizations

Centralized Setting

Central Party

ML Model

Data contains private information of individuals and is sensitive
Untrusted central parties → privacy concerns

3 / 34

Measures for Privacy

Legislation: GDPR, PIPEDA, ...

I ask for consent to gather data

I define privacy-preserving practices

I withdraw data under request

Legislation is important, but not sufficient by itself
(e.g: it is impossible to prove that data has been forgotten)

Technical Measures: algorithms to prevent data exposure

(Semi-)Decentralized Setting: keep data locally, interact to
compute models

4 / 34

Goals

Setting

I untrusted parties

I large number of participants

Important Challenges:

1. First Challenge: improve accuracy and scalability of privacy
preserving algorithms

2. Second Challenge: reduce vulnerability to malicious
participants and dropouts

5 / 34

Introduction

Privacy

GOssip noise for Private Averaging

Conclusion

6 / 34

Differential Privacy (DP)

I X = (X1, . . . ,Xn): dataset of n individuals (Xi belongs to i)

I A: stochastic algorithm

I two datasets X and X ′ are neighboring if they only differ in
the contribution of one individual

Definition (Differential Privacy [Dwork, 2006])

For ε > 0 and δ ∈ (0, 1), A satisfies (ε,δ)-Differential Privacy if for
all neighboring datasets X and X ′ and all subsets of outcomes O
we have

Pr(A(X) ∈ O) ≤ eεPr(A(X ′) ∈ O) + δ

I smaller ε implies more privacy

I δ is a (small enough) value for unlikely events

I precisely quantifies the information leakage

7 / 34

Differential Privacy (DP)

I X = (X1, . . . ,Xn): dataset of n individuals (Xi belongs to i)

I A: stochastic algorithm

I two datasets X and X ′ are neighboring if they only differ in
the contribution of one individual

Definition (Differential Privacy [Dwork, 2006])

For ε > 0 and δ ∈ (0, 1), A satisfies (ε,δ)-Differential Privacy if for
all neighboring datasets X and X ′ and all subsets of outcomes O
we have

Pr(A(X) ∈ O) ≤ eεPr(A(X ′) ∈ O) + δ

I smaller ε implies more privacy

I δ is a (small enough) value for unlikely events

I precisely quantifies the information leakage

7 / 34

Differential Privacy (DP)

I X = (X1, . . . ,Xn): dataset of n individuals (Xi belongs to i)

I A: stochastic algorithm

I two datasets X and X ′ are neighboring if they only differ in
the contribution of one individual

Definition (Differential Privacy [Dwork, 2006])

For ε > 0 and δ ∈ (0, 1), A satisfies (ε,δ)-Differential Privacy if for
all neighboring datasets X and X ′ and all subsets of outcomes O
we have

Pr(A(X) ∈ O) ≤ eεPr(A(X ′) ∈ O) + δ

I smaller ε implies more privacy

I δ is a (small enough) value for unlikely events

I precisely quantifies the information leakage

7 / 34

Privacy Mechanisms

I let A be an algorithm with input X

I (ε, δ)-DP can be achieved adding noise to the outcome of A

Mechanisms

I generate the required noise η according to some distribution
(Gaussian, Laplacian, Exponential, ..)

I reveal A(X) + η

I calibrate variance of η depending on ε, δ, and how sensitive is
A to individual contributions

Two popular settings

I Central DP

I Local DP

8 / 34

Privacy Mechanisms

I let A be an algorithm with input X

I (ε, δ)-DP can be achieved adding noise to the outcome of A

Mechanisms

I generate the required noise η according to some distribution
(Gaussian, Laplacian, Exponential, ..)

I reveal A(X) + η

I calibrate variance of η depending on ε, δ, and how sensitive is
A to individual contributions

Two popular settings

I Central DP

I Local DP

8 / 34

Privacy Mechanisms

I let A be an algorithm with input X

I (ε, δ)-DP can be achieved adding noise to the outcome of A

Mechanisms

I generate the required noise η according to some distribution
(Gaussian, Laplacian, Exponential, ..)

I reveal A(X) + η

I calibrate variance of η depending on ε, δ, and how sensitive is
A to individual contributions

Two popular settings

I Central DP

I Local DP

8 / 34

Central DP (CDP)

Classical Centralized Setting: assumes a Trusted Curator

Trusted Curator Setting

Outcome

Trusted Curator

I asdasd

I asdasd

I 1

I 2

9 / 34

Central DP (CDP)

Classical Centralized Setting: assumes a Trusted Curator

Trusted Curator Setting

Outcome

Trusted Curator

I asdasd

I asdasd

I 1

I 2

9 / 34

Local DP (LDP)

Decentralized Setting: no party is trusted

Local DP[Duchi et al., 2013]: inputs are considered public

Outcome

Untrusted Curator

I 1

I 2

I 3

I 4

10 / 34

Local DP (LDP)

Decentralized Setting: no party is trusted

Local DP[Duchi et al., 2013]: inputs are considered public

Outcome

Untrusted Curator

I 1

I 2

I 3

I 4

10 / 34

Local DP (LDP)

Decentralized Setting: no party is trusted

Local DP[Duchi et al., 2013]: inputs are considered public

Outcome

Untrusted Curator

I requires substantially more noise than CDP for the same
privacy

I For A(X) = 1
n

∑n
i=1 Xi , the noise variance in LDP n times

bigger than in CDP

10 / 34

Local DP (LDP)

Decentralized Setting: no party is trusted

Local DP[Duchi et al., 2013]: inputs are considered public

Outcome

Untrusted Curator

if a trusted curator is available
accuracy is substantially better

I 3

I 4

10 / 34

Introduction

Privacy

GOssip noise for Private Averaging

Conclusion

11 / 34

Private Averaging

I Set U of n users

I Each user u ∈ U has a private value Xu ∈ [0, 1]

I Goal: compute the average 1
n

∑
u∈U Xu while satisfying

differential privacy (DP)

Federated Learning

=
1

n

nX

i=1

I can be used to compute other models and statistics: decision
trees, linear regression, Hosmer-Lemeshow tests ..

12 / 34

Private Averaging

I Set U of n users

I Each user u ∈ U has a private value Xu ∈ [0, 1]

I Goal: compute the average 1
n

∑
u∈U Xu while satisfying

differential privacy (DP)

Federated Learning

=
1

n

nX

i=1

I can be used to compute other models and statistics: decision
trees, linear regression, Hosmer-Lemeshow tests ..

12 / 34

Private Averaging

I Set U of n users

I Each user u ∈ U has a private value Xu ∈ [0, 1]

I Goal: compute the average 1
n

∑
u∈U Xu while satisfying

differential privacy (DP)

Federated Learning

=
1

n

nX

i=1

I can be used to compute other models and statistics: decision
trees, linear regression, Hosmer-Lemeshow tests ..

12 / 34

Key Features

1. Accuracy in the order Trusted Curator DP
I unlike local Differential Privacy

2. Logarithmic communication and computation cost per
party
I unlike secure Aggregation [Bonawitz et al., 2017], except for

recent (concurrent) work [Bell et al., 2020]

3. Guaranteed Correctness in the presence of malicious users
that might want to bias the computation.

13 / 34

Setting

I Users communicate using secure channels through graph G

asdf

I asdf

I asdf

I asdf

14 / 34

Setting

I Users communicate using secure channels through graph G

A proportion ρ of honest (but curious) users:

I follow the protocol

I might try to infer information

I do not collude with other users

14 / 34

Setting

I Users communicate using secure channels through graph G

Adversary: a proportion of (1− ρ) malicious users:

I deviate from the protocol

I try to (1) infer information and (2) bias the computation

I collude in organized attacks

14 / 34

Setting

I Users communicate using secure channels through graph G

The sub-graph of honest users is GH

I channels whose information the is not seen by the adversary

I not known by honest parties

I asdf

14 / 34

Protocol

Algorithm 1 Gopa protocol

Input: graph G , variances σ2
∆, σ

2
η ∈ R+

for all neighbor pairs {u, v} ∈ E (G) do
1a. u and v draw random pairwise noise x ∼ N (0, σ2

∆)
1b. set ∆u,v ← x , ∆v ,u ← −x

end for
for each user u ∈ U do

2. u draws a random independent noise ηu ∼ N (0, σ2
η)

3. u reveals X̂u ← Xu +
∑

u∼v ∆u,v + ηu
end for

Unbiased estimate of the average: X̂ avg = 1
n

∑
u X̂u

with variance σ2
η/n.

15 / 34

Privacy Guarantees - General Result

The adversary sees:

1. who communicates with who (structure of G)

2. pairwise noise involving a malicious peer
(∆u,v : u or v is malicious)

3. independent noise of malicious peers (ηu: u malicious)

General Result
Gopa can achieve (ε, δ)-DP with trusted curator accuracy when

I the subgraph GH of honest users is connected

I pairwise variance σ2
∆ is large enough

The required σ2
∆ depends on the connectivity of GH

16 / 34

Privacy Guarantees - General Result

The adversary sees:

1. who communicates with who (structure of G)

2. pairwise noise involving a malicious peer
(∆u,v : u or v is malicious)

3. independent noise of malicious peers (ηu: u malicious)

General Result
Gopa can achieve (ε, δ)-DP with trusted curator accuracy when

I the subgraph GH of honest users is connected

I pairwise variance σ2
∆ is large enough

The required σ2
∆ depends on the connectivity of GH

16 / 34

Privacy Guarantees - General Results

I We proved utility of the central setting as long as GH is
connected

I How to ensure that GH is good enough?

17 / 34

Privacy Guarantees - Random Graphs
I k-out random graph: each user chooses k neighbors at

random
I if k = Oρ(log(n)) then GH is sufficiently connected with high

probability

Theorem (k-out Random Graphs)

Let ε, δ ∈ (0, 1) and

I each user chooses k = O(log(ρn)/ρ) neighbors

I σ2
η = O(log(1/δ)/ρnε2) → in the order of trusted curator

noise

I σ2
∆ = O(σ2

ηρn/k)

Then Gopa is (ε, δ′)-differentially private with δ′ = O(δ).

I Trusted curator accuracy with logarithmic number of
messages per user

I we show that k and σ∆ can be even smaller in practice
(using simulations)

18 / 34

Privacy Guarantees - Random Graphs
I k-out random graph: each user chooses k neighbors at

random
I if k = Oρ(log(n)) then GH is sufficiently connected with high

probability

Theorem (k-out Random Graphs)

Let ε, δ ∈ (0, 1) and

I each user chooses k = O(log(ρn)/ρ) neighbors

I σ2
η = O(log(1/δ)/ρnε2) → in the order of trusted curator

noise

I σ2
∆ = O(σ2

ηρn/k)

Then Gopa is (ε, δ′)-differentially private with δ′ = O(δ).

I Trusted curator accuracy with logarithmic number of
messages per user

I we show that k and σ∆ can be even smaller in practice
(using simulations)

18 / 34

An Illustration
n = 10000, (ε, δ)-DP for ε = 0.1, δ = 10/(ρn)2

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Proportion of honest users that did not drop out

10 4

10 3

10 2

10 1
V

a
ri

a
n
ce

 o
f

e
st

im
a
te

d
 a

v
e
ra

g
e

GOPA (k-out graph)
Central DP with n users

Local DP n users

I utility close to CDP even if ρ is small
I substantially more efficient than LDP

19 / 34

An Illustration
n = 10000, (ε, δ)-DP for ε = 0.1, δ = 10/(ρn)2

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Proportion of honest users that did not drop out

10 4

10 3

10 2

10 1
V

a
ri

a
n
ce

 o
f

e
st

im
a
te

d
 a

v
e
ra

g
e

GOPA (k-out graph)
Central DP with n users

Local DP n users

I utility close to CDP even if ρ is small
I substantially more efficient than LDP

19 / 34

An Experiment
I (ε, δ)-DP Federated Learning for Logistic Regression
I Each user has 1 or 2 data points (each step samples one point)

10 20 30 40 50
Number of iterations

0.4

0.5

0.6

0.7

0.8

0.9
T
e
st

 a
cc

u
ra

cy

FedSGD w. trusted curator (Central DP)

FedSGD w. GOPA (= 0.5)

FedSGD w. local DP

n = 10000, ρ = 0.5 (prop. honest users), ε = 1, δ = 10/(ρn)2

I CDP and Gopa have similar performance
I LDP does not arrive to learn anything

20 / 34

Dropouts

I pairwise noise can be rolled back

I have the same privacy impact than a malicious user
(degrades GH)

I ρ: proportion of honest users that did not dropout

If dropouts are more than the expected by ρ:

I Gaussian uncancelled noise has a bounded impact

I Gopa can tolerate a few extra dropouts

21 / 34

Dropouts

I pairwise noise can be rolled back

I have the same privacy impact than a malicious user
(degrades GH)

I ρ: proportion of honest users that did not dropout

If dropouts are more than the expected by ρ:

I Gaussian uncancelled noise has a bounded impact

I Gopa can tolerate a few extra dropouts

21 / 34

We have shown

1. how to obtain trusted curator utility

2. how to have tractable communication

3. how to deal with dropouts

Now we show:

I robustness against malicious participants

22 / 34

Ensuring Correctness

Goal: prevent that a malicious user u poisons X̂u

(as much as possible)

Ensure that:

Xu ∈ [0, 1], ∀u ∈ U

∆u,v = −∆v ,u, ∀{u, v} neighbors in G

ηu ∼ N (0, σ2
η), ∀u ∈ U

X̂u = Xu +
∑
u∼v

∆u,v + ηu. ∀u ∈ U

I u can lie about Xu, but this is also true in the central setting

23 / 34

Ensuring Correctness

Goal: prevent that a malicious user u poisons X̂u

(as much as possible)

Ensure that:

Xu ∈ [0, 1], ∀u ∈ U

∆u,v = −∆v ,u, ∀{u, v} neighbors in G

ηu ∼ N (0, σ2
η), ∀u ∈ U

X̂u = Xu +
∑
u∼v

∆u,v + ηu. ∀u ∈ U

I u can lie about Xu, but this is also true in the central setting

23 / 34

Ensuring Correctness

Goal: prevent that a malicious user u poisons X̂u

(as much as possible)

Ensure that:

Xu ∈ [0, 1], ∀u ∈ U

∆u,v = −∆v ,u, ∀{u, v} neighbors in G

ηu ∼ N (0, σ2
η), ∀u ∈ U

X̂u = Xu +
∑
u∼v

∆u,v + ηu. ∀u ∈ U

I u can lie about Xu, but this is also true in the central setting

23 / 34

Ensuring Correctness of Computations

Parties share a bulletin board (e.g. block chain)

I users can post public messages

I other parties can query messages

Each user u ∈ U:

I publishes an encrypted log of the computation

I prove correctness of the computations
using Commitments and Zero Knowledge Proofs

Assume deterrence: malicious users avoid getting detected by
cheating

24 / 34

Ensuring Correctness of Computations

Parties share a bulletin board (e.g. block chain)

I users can post public messages

I other parties can query messages

Each user u ∈ U:

I publishes an encrypted log of the computation

I prove correctness of the computations
using Commitments and Zero Knowledge Proofs

Assume deterrence: malicious users avoid getting detected by
cheating

24 / 34

Ensuring Correctness of Computations

Parties share a bulletin board (e.g. block chain)

I users can post public messages

I other parties can query messages

Each user u ∈ U:

I publishes an encrypted log of the computation

I prove correctness of the computations
using Commitments and Zero Knowledge Proofs

Assume deterrence: malicious users avoid getting detected by
cheating

24 / 34

Cryptographic Tools

Commitments
Allow to commit to a value while keeping it hidden

It is a function C : M → C:

I C (x) does not reveal anything about x (hiding)

I infeasible to find x and x ′ such that C (x) = C (x ′) (binding)

Zero Knowledge Proofs (ZKP)

Allow prove properties about committed values without revealing
anything else

I parties can prove arithmetic relations (+ and ×) over
commitments in Z or Zp

I parties can prove boolean formulas (∧ and ∨) over provable
statements

I there is negligible probability of success in proving false
relations

25 / 34

Cryptographic Tools

Commitments
Allow to commit to a value while keeping it hidden
It is a function C : M → C:

I C (x) does not reveal anything about x (hiding)

I infeasible to find x and x ′ such that C (x) = C (x ′) (binding)

Zero Knowledge Proofs (ZKP)

Allow prove properties about committed values without revealing
anything else

I parties can prove arithmetic relations (+ and ×) over
commitments in Z or Zp

I parties can prove boolean formulas (∧ and ∨) over provable
statements

I there is negligible probability of success in proving false
relations

25 / 34

Cryptographic Tools

Commitments
Allow to commit to a value while keeping it hidden
It is a function C : M → C:

I C (x) does not reveal anything about x (hiding)

I infeasible to find x and x ′ such that C (x) = C (x ′) (binding)

Zero Knowledge Proofs (ZKP)

Allow prove properties about committed values without revealing
anything else

I parties can prove arithmetic relations (+ and ×) over
commitments in Z or Zp

I parties can prove boolean formulas (∧ and ∨) over provable
statements

I there is negligible probability of success in proving false
relations

25 / 34

Gopa: Verification Protocol
Each user u ∈ U

I commits to Xu, ηu, ∆u,v ’s and X̂u

(as soon as generated)

I and uses ZKPs to prove

Xu ∈ [0, 1],

∆u,v = −∆v ,u, ∀{v ∈ N(u)}
ηu ∼ N (0, σ2

η), (customizable precision)

X̂u = Xu +
∑

v∈N(u)

∆u,v + ηu.

I ensures correctness of Gopa

I can prove consistency of multiple Gopa runs over related data

I verifying distributions: some elaboration

26 / 34

Gopa: Verification Protocol
Each user u ∈ U

I commits to Xu, ηu, ∆u,v ’s and X̂u

(as soon as generated)

I and uses ZKPs to prove

Xu ∈ [0, 1],

∆u,v = −∆v ,u, ∀{v ∈ N(u)}
ηu ∼ N (0, σ2

η), (customizable precision)

X̂u = Xu +
∑

v∈N(u)

∆u,v + ηu.

I ensures correctness of Gopa

I can prove consistency of multiple Gopa runs over related data

I verifying distributions: some elaboration

26 / 34

Gopa: Verification Protocol
Each user u ∈ U

I commits to Xu, ηu, ∆u,v ’s and X̂u

(as soon as generated)

I and uses ZKPs to prove

Xu ∈ [0, 1],

∆u,v = −∆v ,u, ∀{v ∈ N(u)}
ηu ∼ N (0, σ2

η), (customizable precision)

X̂u = Xu +
∑

v∈N(u)

∆u,v + ηu.

I ensures correctness of Gopa

I can prove consistency of multiple Gopa runs over related data

I verifying distributions: some elaboration

26 / 34

Gopa: Verification Protocol
Each user u ∈ U

I commits to Xu, ηu, ∆u,v ’s and X̂u

(as soon as generated)

I and uses ZKPs to prove

Xu ∈ [0, 1],

∆u,v = −∆v ,u, ∀{v ∈ N(u)}
ηu ∼ N (0, σ2

η), (customizable precision)

X̂u = Xu +
∑

v∈N(u)

∆u,v + ηu.

I ensures correctness of Gopa

I can prove consistency of multiple Gopa runs over related data

I verifying distributions: some elaboration

26 / 34

Proving ηu ∼ N (0, σ2
η)

For each technique, we measure
I Quality: MSE to an ideal Gaussian over 107 samples
I Cost per sample: communication and computation

for different precision parameters.

15 20 25 30 35
Group Elements

(communication cost)

10 6

10 5

10 4

10 3

10 2

10 1

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

BM

PolM

CLT

InvM-S

InvM-R

103 104 105

Group Exponentiations
(computation cost)

10 6

10 5

10 4

10 3

10 2

10 1

100

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

BM

PolM

CLT

InvM-S

InvM-R

I quality impacts on privacy
I if quality is more important: PolM and BM

(< 0.5 seconds, < 1 KByte)
I otherwise: CLT can generate fast samples (10 milliseconds)

27 / 34

Proving ηu ∼ N (0, σ2
η)

For each technique, we measure
I Quality: MSE to an ideal Gaussian over 107 samples
I Cost per sample: communication and computation

for different precision parameters.

15 20 25 30 35
Group Elements

(communication cost)

10 6

10 5

10 4

10 3

10 2

10 1

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

BM

PolM

CLT

InvM-S

InvM-R

103 104 105

Group Exponentiations
(computation cost)

10 6

10 5

10 4

10 3

10 2

10 1

100

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

BM

PolM

CLT

InvM-S

InvM-R

I quality impacts on privacy
I if quality is more important: PolM and BM

(< 0.5 seconds, < 1 KByte)
I otherwise: CLT can generate fast samples (10 milliseconds)

27 / 34

Introduction

Privacy

GOssip noise for Private Averaging

Conclusion

28 / 34

Summary

In this work we

I provide a protocol to privately compute statistics and models
through averaging

I prove that it achieves similar accuracy than the central setting

I prove that it can achieve good balance between
communication and amount of DP noise

I provide robustness against malicious users
I similar to the central setting
I with tractable computational cost

29 / 34

Future Work and Perspectives

1. Further Experimental Study
I determine parameters that impact in the runtime
I exploit vectorization
I simulate realistic malicious behavior and dropouts

2. Computation of Statistics
I what can be computed using private averaging as a building

block?
I how can our algorithms be combined with other building

blocks (MPC, Shuffling, ...)

3. Derivation of more efficient privacy bounds
I better composition bounds for specific mechanisms

(e.g. tighter than current advanced composition)
I exploit noise that is already present in the data or computation

4. Verifying correct training of models
I proving correct computation of training is challenging
I verification cost must be tractabe for Federated Learning
I could we use the model to prove it is good enough?

30 / 34

Future Work and Perspectives

1. Further Experimental Study
I determine parameters that impact in the runtime
I exploit vectorization
I simulate realistic malicious behavior and dropouts

2. Computation of Statistics
I what can be computed using private averaging as a building

block?
I how can our algorithms be combined with other building

blocks (MPC, Shuffling, ...)

3. Derivation of more efficient privacy bounds
I better composition bounds for specific mechanisms

(e.g. tighter than current advanced composition)
I exploit noise that is already present in the data or computation

4. Verifying correct training of models
I proving correct computation of training is challenging
I verification cost must be tractabe for Federated Learning
I could we use the model to prove it is good enough?

30 / 34

Future Work and Perspectives

1. Further Experimental Study
I determine parameters that impact in the runtime
I exploit vectorization
I simulate realistic malicious behavior and dropouts

2. Computation of Statistics
I what can be computed using private averaging as a building

block?
I how can our algorithms be combined with other building

blocks (MPC, Shuffling, ...)

3. Derivation of more efficient privacy bounds
I better composition bounds for specific mechanisms

(e.g. tighter than current advanced composition)
I exploit noise that is already present in the data or computation

4. Verifying correct training of models
I proving correct computation of training is challenging
I verification cost must be tractabe for Federated Learning
I could we use the model to prove it is good enough?

30 / 34

Future Work and Perspectives

1. Further Experimental Study
I determine parameters that impact in the runtime
I exploit vectorization
I simulate realistic malicious behavior and dropouts

2. Computation of Statistics
I what can be computed using private averaging as a building

block?
I how can our algorithms be combined with other building

blocks (MPC, Shuffling, ...)

3. Derivation of more efficient privacy bounds
I better composition bounds for specific mechanisms

(e.g. tighter than current advanced composition)
I exploit noise that is already present in the data or computation

4. Verifying correct training of models
I proving correct computation of training is challenging
I verification cost must be tractabe for Federated Learning
I could we use the model to prove it is good enough?

30 / 34

Thanks for listening !

31 / 34

References I

Bell, J. H., Bonawitz, K. A., Gascón, A., Lepoint, T., and
Raykova, M. (2020).
Secure Single-Server Aggregation with (Poly)Logarithmic
Overhead.
In CCS.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A., and Seth,
K. (2017).
Practical Secure Aggregation for Privacy-Preserving Machine
Learning.
In CCS.

32 / 34

References II

Duchi, J. C., Jordan, M. I., and Wainwright, M. J. (2013).
Local Privacy and Statistical Minimax Rates.
In 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pages 429–438.
ISSN: 0272-5428.

Dwork, C. (2006).
Differential Privacy.
In ICALP.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and
Naor, M. (2006).
Our Data, Ourselves: Privacy Via Distributed Noise
Generation.
In Vaudenay, S., editor, Advances in Cryptology -
EUROCRYPT 2006, pages 486–503, Berlin, Heidelberg.
Springer Berlin Heidelberg.

33 / 34

References III

Goldwasser, S., Rothblum, G. N., Shafer, J., and Yehudayoff,
A. (2021).
Interactive Proofs for Verifying Machine Learning.
In Lee, J. R., editor, 12th Innovations in Theoretical Computer
Science Conference (ITCS 2021), volume 185 of Leibniz
International Proceedings in Informatics (LIPIcs), pages
41:1–41:19, Dagstuhl, Germany. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

Walther, J. S. (1971).
A unified algorithm for elementary functions.
In Proceedings of the May 18-20, 1971, spring joint computer
conference, AFIPS ’71 (Spring), pages 379–385, New York,
NY, USA. Association for Computing Machinery.

34 / 34

	Introduction
	Privacy
	GOssip noise for Private Averaging
	Conclusion

