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Centralized Machine Learning

I Machine Learning (ML) offers solutions in domains such as
machine vision, natural language processing, medical research

I It requires large amounts of data

I Data often belongs to individuals or organizations

Centralized Setting

Central Party

ML Model

Data contains private information of individuals and is sensitive
Untrusted central parties → privacy concerns
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Measures for Privacy

Legislation: GDPR, PIPEDA, ...

I ask for consent to gather data

I define privacy-preserving practices

I withdraw data under request

Legislation is important, but not sufficient by itself
(e.g: it is impossible to prove that data has been forgotten)

Technical Measures: algorithms to prevent data exposure

(Semi-)Decentralized Setting: keep data locally, interact to
compute models
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Goals

Setting

I untrusted parties

I large number of participants

Important Challenges:

1. First Challenge: improve accuracy and scalability of privacy
preserving algorithms

2. Second Challenge: reduce vulnerability to malicious
participants and dropouts
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Differential Privacy (DP)

I X = (X1, . . . ,Xn): dataset of n individuals (Xi belongs to i)

I A: stochastic algorithm

I two datasets X and X ′ are neighboring if they only differ in
the contribution of one individual

Definition (Differential Privacy [Dwork, 2006])

For ε > 0 and δ ∈ (0, 1), A satisfies (ε,δ)-Differential Privacy if for
all neighboring datasets X and X ′ and all subsets of outcomes O
we have

Pr(A(X ) ∈ O) ≤ eεPr(A(X ′) ∈ O) + δ

I smaller ε implies more privacy

I δ is a (small enough) value for unlikely events

I precisely quantifies the information leakage
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Privacy Mechanisms

I let A be an algorithm with input X

I (ε, δ)-DP can be achieved adding noise to the outcome of A

Mechanisms

I generate the required noise η according to some distribution
(Gaussian, Laplacian, Exponential, ..)

I reveal A(X ) + η

I calibrate variance of η depending on ε, δ, and how sensitive is
A to individual contributions

Two popular settings

I Central DP

I Local DP
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Central DP (CDP)

Classical Centralized Setting: assumes a Trusted Curator

Trusted Curator Setting

Outcome

Trusted Curator

I asdasd

I asdasd

I 1

I 2
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Local DP (LDP)

Decentralized Setting: no party is trusted

Local DP[Duchi et al., 2013]: inputs are considered public

Outcome

Untrusted Curator

I 1

I 2

I 3

I 4
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Local DP (LDP)

Decentralized Setting: no party is trusted

Local DP[Duchi et al., 2013]: inputs are considered public

Outcome

Untrusted Curator

I requires substantially more noise than CDP for the same
privacy

I For A(X ) = 1
n

∑n
i=1 Xi , the noise variance in LDP n times

bigger than in CDP
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Local DP (LDP)

Decentralized Setting: no party is trusted

Local DP[Duchi et al., 2013]: inputs are considered public

Outcome

Untrusted Curator

if a trusted curator is available
accuracy is substantially better

I 3

I 4
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Private Averaging

I Set U of n users

I Each user u ∈ U has a private value Xu ∈ [0, 1]

I Goal: compute the average 1
n

∑
u∈U Xu while satisfying

differential privacy (DP)

Federated Learning

=
1

n

nX

i=1

I can be used to compute other models and statistics: decision
trees, linear regression, Hosmer-Lemeshow tests ..
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Key Features

1. Accuracy in the order Trusted Curator DP
I unlike local Differential Privacy

2. Logarithmic communication and computation cost per
party
I unlike secure Aggregation [Bonawitz et al., 2017], except for

recent (concurrent) work [Bell et al., 2020]

3. Guaranteed Correctness in the presence of malicious users
that might want to bias the computation.
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Setting

I Users communicate using secure channels through graph G

asdf

I asdf

I asdf

I asdf
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Setting

I Users communicate using secure channels through graph G

A proportion ρ of honest (but curious) users:

I follow the protocol

I might try to infer information

I do not collude with other users
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Setting

I Users communicate using secure channels through graph G

Adversary: a proportion of (1− ρ) malicious users:

I deviate from the protocol

I try to (1) infer information and (2) bias the computation

I collude in organized attacks
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Setting

I Users communicate using secure channels through graph G

The sub-graph of honest users is GH

I channels whose information the is not seen by the adversary

I not known by honest parties

I asdf
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Protocol

Algorithm 1 Gopa protocol

Input: graph G , variances σ2
∆, σ

2
η ∈ R+

for all neighbor pairs {u, v} ∈ E (G ) do
1a. u and v draw random pairwise noise x ∼ N (0, σ2

∆)
1b. set ∆u,v ← x , ∆v ,u ← −x

end for
for each user u ∈ U do

2. u draws a random independent noise ηu ∼ N (0, σ2
η)

3. u reveals X̂u ← Xu +
∑

u∼v ∆u,v + ηu
end for

Unbiased estimate of the average: X̂ avg = 1
n

∑
u X̂u

with variance σ2
η/n.
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Privacy Guarantees - General Result

The adversary sees:

1. who communicates with who (structure of G )

2. pairwise noise involving a malicious peer
(∆u,v : u or v is malicious)

3. independent noise of malicious peers (ηu: u malicious)

General Result
Gopa can achieve (ε, δ)-DP with trusted curator accuracy when

I the subgraph GH of honest users is connected

I pairwise variance σ2
∆ is large enough

The required σ2
∆ depends on the connectivity of GH
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Privacy Guarantees - General Results

I We proved utility of the central setting as long as GH is
connected

I How to ensure that GH is good enough?
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Privacy Guarantees - Random Graphs
I k-out random graph: each user chooses k neighbors at

random
I if k = Oρ(log(n)) then GH is sufficiently connected with high

probability

Theorem (k-out Random Graphs)

Let ε, δ ∈ (0, 1) and

I each user chooses k = O(log(ρn)/ρ) neighbors

I σ2
η = O(log(1/δ)/ρnε2) → in the order of trusted curator

noise

I σ2
∆ = O(σ2

ηρn/k)

Then Gopa is (ε, δ′)-differentially private with δ′ = O(δ).

I Trusted curator accuracy with logarithmic number of
messages per user

I we show that k and σ∆ can be even smaller in practice
(using simulations)

18 / 34



Privacy Guarantees - Random Graphs
I k-out random graph: each user chooses k neighbors at

random
I if k = Oρ(log(n)) then GH is sufficiently connected with high

probability

Theorem (k-out Random Graphs)

Let ε, δ ∈ (0, 1) and

I each user chooses k = O(log(ρn)/ρ) neighbors

I σ2
η = O(log(1/δ)/ρnε2) → in the order of trusted curator

noise

I σ2
∆ = O(σ2

ηρn/k)

Then Gopa is (ε, δ′)-differentially private with δ′ = O(δ).

I Trusted curator accuracy with logarithmic number of
messages per user

I we show that k and σ∆ can be even smaller in practice
(using simulations)

18 / 34



An Illustration
n = 10000, (ε, δ)-DP for ε = 0.1, δ = 10/(ρn)2
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GOPA (k-out graph)
Central DP with n users

Local DP n users

I utility close to CDP even if ρ is small
I substantially more efficient than LDP
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An Experiment
I (ε, δ)-DP Federated Learning for Logistic Regression
I Each user has 1 or 2 data points (each step samples one point)
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Number of iterations
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FedSGD w. trusted curator (Central DP)

FedSGD w. GOPA ( = 0.5)

FedSGD w. local DP

n = 10000, ρ = 0.5 (prop. honest users), ε = 1, δ = 10/(ρn)2

I CDP and Gopa have similar performance
I LDP does not arrive to learn anything
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Dropouts

I pairwise noise can be rolled back

I have the same privacy impact than a malicious user
(degrades GH)

I ρ: proportion of honest users that did not dropout

If dropouts are more than the expected by ρ:

I Gaussian uncancelled noise has a bounded impact

I Gopa can tolerate a few extra dropouts
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We have shown

1. how to obtain trusted curator utility

2. how to have tractable communication

3. how to deal with dropouts

Now we show:

I robustness against malicious participants
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Ensuring Correctness

Goal: prevent that a malicious user u poisons X̂u

(as much as possible)

Ensure that:

Xu ∈ [0, 1], ∀u ∈ U

∆u,v = −∆v ,u, ∀{u, v} neighbors in G

ηu ∼ N (0, σ2
η), ∀u ∈ U

X̂u = Xu +
∑
u∼v

∆u,v + ηu. ∀u ∈ U

I u can lie about Xu, but this is also true in the central setting
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Ensuring Correctness of Computations

Parties share a bulletin board (e.g. block chain)

I users can post public messages

I other parties can query messages

Each user u ∈ U:

I publishes an encrypted log of the computation

I prove correctness of the computations
using Commitments and Zero Knowledge Proofs

Assume deterrence: malicious users avoid getting detected by
cheating
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Cryptographic Tools

Commitments
Allow to commit to a value while keeping it hidden

It is a function C : M → C:

I C (x) does not reveal anything about x (hiding)

I infeasible to find x and x ′ such that C (x) = C (x ′) (binding)

Zero Knowledge Proofs (ZKP)

Allow prove properties about committed values without revealing
anything else

I parties can prove arithmetic relations (+ and ×) over
commitments in Z or Zp

I parties can prove boolean formulas (∧ and ∨) over provable
statements

I there is negligible probability of success in proving false
relations
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Gopa: Verification Protocol
Each user u ∈ U

I commits to Xu, ηu, ∆u,v ’s and X̂u

(as soon as generated)

I and uses ZKPs to prove

Xu ∈ [0, 1],

∆u,v = −∆v ,u, ∀{v ∈ N(u)}
ηu ∼ N (0, σ2

η), (customizable precision)

X̂u = Xu +
∑

v∈N(u)

∆u,v + ηu.

I ensures correctness of Gopa

I can prove consistency of multiple Gopa runs over related data

I verifying distributions: some elaboration
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Proving ηu ∼ N (0, σ2
η)

For each technique, we measure
I Quality: MSE to an ideal Gaussian over 107 samples
I Cost per sample: communication and computation

for different precision parameters.
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I quality impacts on privacy
I if quality is more important: PolM and BM

(< 0.5 seconds, < 1 KByte)
I otherwise: CLT can generate fast samples (10 milliseconds)
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Summary

In this work we

I provide a protocol to privately compute statistics and models
through averaging

I prove that it achieves similar accuracy than the central setting

I prove that it can achieve good balance between
communication and amount of DP noise

I provide robustness against malicious users
I similar to the central setting
I with tractable computational cost
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Future Work and Perspectives

1. Further Experimental Study
I determine parameters that impact in the runtime
I exploit vectorization
I simulate realistic malicious behavior and dropouts

2. Computation of Statistics
I what can be computed using private averaging as a building

block?
I how can our algorithms be combined with other building

blocks (MPC, Shuffling, ...)

3. Derivation of more efficient privacy bounds
I better composition bounds for specific mechanisms

(e.g. tighter than current advanced composition)
I exploit noise that is already present in the data or computation

4. Verifying correct training of models
I proving correct computation of training is challenging
I verification cost must be tractabe for Federated Learning
I could we use the model to prove it is good enough?

30 / 34



Future Work and Perspectives

1. Further Experimental Study
I determine parameters that impact in the runtime
I exploit vectorization
I simulate realistic malicious behavior and dropouts

2. Computation of Statistics
I what can be computed using private averaging as a building

block?
I how can our algorithms be combined with other building

blocks (MPC, Shuffling, ...)

3. Derivation of more efficient privacy bounds
I better composition bounds for specific mechanisms

(e.g. tighter than current advanced composition)
I exploit noise that is already present in the data or computation

4. Verifying correct training of models
I proving correct computation of training is challenging
I verification cost must be tractabe for Federated Learning
I could we use the model to prove it is good enough?

30 / 34



Future Work and Perspectives

1. Further Experimental Study
I determine parameters that impact in the runtime
I exploit vectorization
I simulate realistic malicious behavior and dropouts

2. Computation of Statistics
I what can be computed using private averaging as a building

block?
I how can our algorithms be combined with other building

blocks (MPC, Shuffling, ...)

3. Derivation of more efficient privacy bounds
I better composition bounds for specific mechanisms

(e.g. tighter than current advanced composition)
I exploit noise that is already present in the data or computation

4. Verifying correct training of models
I proving correct computation of training is challenging
I verification cost must be tractabe for Federated Learning
I could we use the model to prove it is good enough?

30 / 34



Future Work and Perspectives

1. Further Experimental Study
I determine parameters that impact in the runtime
I exploit vectorization
I simulate realistic malicious behavior and dropouts

2. Computation of Statistics
I what can be computed using private averaging as a building

block?
I how can our algorithms be combined with other building

blocks (MPC, Shuffling, ...)

3. Derivation of more efficient privacy bounds
I better composition bounds for specific mechanisms

(e.g. tighter than current advanced composition)
I exploit noise that is already present in the data or computation

4. Verifying correct training of models
I proving correct computation of training is challenging
I verification cost must be tractabe for Federated Learning
I could we use the model to prove it is good enough?

30 / 34



Thanks for listening !
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