Publications

International Conferences

  • PAC-Bayesian Contrastive Unsupervised Representation Learning
    Kento Nozawa ; Pascal Germain ; Benjamin Guedj
    Conference on Uncertainty in Artificial Intelligence (UAI), 2020
  • Improved PAC-Bayesian Bounds for Linear Regression
    Vera Shalaeva ; Alireza Fakhrizadeh Esfahani ; Pascal Germain ; Mihaly Petreczky
    Conference on Artificial Intelligence (AAAI), 2020
  • Landmark-based Ensemble Learning with Random Fourier Features and Gradient Boosting
    Léo Gautheron ; Pascal Germain ; Amaury Habrard ; Guillaume Metzler ; Emilie Morvant ; Marc Sebban ; Valentina Zantedeschi
    European Conference on Machine Learning & Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2020
  • Pseudo-Bayesian Learning with Kernel Fourier Transform as Prior
    Gaël Letarte ; Emilie Morvant ; Pascal Germain
    International Conference on Artificial Intelligence and Statistics (AISTATS), 2019, Naha, Okinawa, Japan
    [pdf][bibtex][code]
  • Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks
    Gaël Letarte ; Pascal Germain ; Benjamin Guedj ; François Laviolette
    Conference on Neural Information Processing Systems (NeurIPS), 2019
    [pdf][bibtex (to appear)]

Journal

  • A primer on PAC-Bayesian Learning
    Benjamin Guedj
    Journal of Société Mathématiques de France (SMF), 2019
    [pdf][bibtex (to appear)]

French Conferences

  • Théorie PAC-Bayésienne pour l’apprentissage en deux étapes de réseaux de neurones
    Paul Viallard ; Rémi Emonet ; Amaury Habrard ; Emilie Morvant; Pascal Germain
    French Conference on Machine Learning (CAp 2020), 2020
  • Apprentissage d’ensemble basé sur des points de repère avec des caractéristiques de Fourier aléatoires et un renforcement du gradient
    Léo Gautheron ; Pascal Germain ; Amaury Habrard ; Guillaume Metzler ; Emilie Morvant ; Marc Sebban ; Valentina Zantedeschi
    French Conference on Machine Learning (CAp 2020), 2020
  • Revisite des “random Fourier features” basée sur l’apprentissage PAC-Bayésien via des points d’intérêts
    Léo Gautheron ; Pascal Germain ; Amaury Habrard ; Gaël Letarte ; Emilie Morvant ; Marc Sebban ; Valentina Zantedeschi
    French Conference on Machine Learning (CAp 2019), 2019

Workshops

  • Interpreting Neural Networks as Majority Votes through the PAC-Bayesian Theory
    Paul Viallard ; Rémi Emonet ; Pascal Germain ; Amaury Habrard ; Emilie Morvant
    NeurIPS 2019 Workshop on Machine Learning with guarantees
  • Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks
    Gaël Letarte ; Pascal Germain ; Benjamin Guedj ; François Laviolette
    NeurIPS 2019 Workshop on Machine Learning with guarantees

 

Comments are closed.