A discretize-then-map approach for the treatment of parameterized geometries in model order reduction

Tommaso Taddei

Inria, Team MEMPHIS
Aria Seminar
Virtually (from Bordeaux), September 21st 2021

Acknowledgements

Joint work with L Zhang (Inria)
Collaborators: ${ }^{1}$
A Ferrero (Politecnico di Torino)
A lollo (Inria)

Sponsors:

IdEx Bordeaux (projet émergence)	$2020-2021$
EDF	$2020-2021$
ANDRA	$2019-2022$

${ }^{1}$ TT would also like to thank Y Maday, P Mounoud, AT Patera and M Yano for fruitful discussions.

Objective

Model reduction in parametric domains

The goal of parameterized Model Order Reduction (pMOR) is to reduce the marginal cost associated with the solution to parameterized problems. pMOR is motivated by real-time and many-query problems design and optimization, UQ, control.

Model reduction in parametric domains

The goal of parameterized Model Order Reduction (pMOR) is to reduce the marginal cost associated with the solution to parameterized problems.
pMOR is motivated by real-time and many-query problems design and optimization, UQ, control.

The aim of this talk is to discuss the treatment of parameterized geometries in projection-based pMOR.
We denote by
$\mu=\left[\mu_{1}, \ldots, \mu_{P}\right] \in \mathcal{P} \subset \mathbb{R}^{P}$ a vector of parameters;
$\left\{\Omega_{\mu}: \mu \in \mathcal{P}\right\}$ a family of parametric domains;
$U_{\mu}: \Omega_{\mu} \rightarrow \mathbb{R}^{D}$ the solution field.

Mapped formulation

We recast the problem in a parameter-independent domain
Ω through a mapping Φ such that
Φ_{μ} is invertible and $\Omega_{\mu}=\Phi_{\mu}(\Omega)$, for all $\mu \in \mathcal{P}$.

Mapped formulation

We recast the problem in a parameter-independent domain
Ω through a mapping Φ such that
Φ_{μ} is invertible and $\Omega_{\mu}=\Phi_{\mu}(\Omega)$, for all $\mu \in \mathcal{P}$.
Task 1: construction of Φ;
RBF, FFD, ...
Task 2: solution to the mapped problem for $U_{\mu} \circ \Phi_{\mu}$.

Mapped formulation

We recast the problem in a parameter-independent domain
Ω through a mapping Φ such that
Φ_{μ} is invertible and $\Omega_{\mu}=\Phi_{\mu}(\Omega)$, for all $\mu \in \mathcal{P}$.
Task 1: construction of Φ; RBF, FFD, ...
Task 2: solution to the mapped problem for $U_{\mu} \circ \Phi_{\mu}$.
Agenda.

1. two paradigms to deal with geometry variations;
2. projection-based pMOR;
3. application to 2D RANS.

Treatment of parametric geometries in pMOR

Preliminary definitions

Define the mesh $\mathcal{T}_{\mathrm{hf}}=\left(\left\{x_{j}^{\mathrm{hf}}\right\}_{j}, \mathrm{~T}\right)$, with nodes $\left\{x_{j}^{\mathrm{hf}}\right\}_{j}$ and connectivity matrix T , and the associated FE space $\mathcal{X}_{\mathrm{hf}}$.
Given $w \in \mathcal{X}_{\mathrm{hf}}$, denote by $w \in \mathbb{R}^{N}$ the associated vector representation.

Given $\Phi: \Omega \rightarrow \Omega^{\prime}$, define the mapped mesh $\Phi\left(\mathcal{T}_{\mathrm{hf}}\right)=$ $\left(\left\{\Phi\left(x_{j}^{\mathrm{hf}}\right)\right\}_{j}, \mathrm{~T}\right)$.
Definition. Φ is $\mathcal{T}_{\mathrm{hf}}$-bijective if the element mappings

$$
\Psi_{k, \Phi}^{\mathrm{hf}}(x)=\sum_{i=1}^{n_{\mathrm{lp}}} \Phi\left(x_{i, k}^{\mathrm{hf}}\right) \hat{\phi}_{i}(x), \quad x_{i, k}^{\mathrm{hf}}=x_{\mathrm{T}_{i, k}}^{\mathrm{hf}},
$$

are invertible.

Map-then-discretize (MtD) approach

Consider $-\Delta U_{\mu}+b_{\mu} \cdot \nabla U_{\mu}=f_{\mu}$ in $\Omega_{\mu},\left.\quad U_{\mu}\right|_{\partial \Omega_{\mu}}=0$.
If $\Phi_{\mu}: \Omega \rightarrow \Omega_{\mu}$ is Lipschitz, $\widetilde{U}_{\mu}=U_{\mu} \circ \Phi_{\mu}$ solves

$$
\int_{\Omega}\left(K_{\mu} \nabla \widetilde{U}_{\mu} \cdot \nabla v+\widetilde{b}_{\mu} \cdot \nabla \widetilde{U}_{\mu} v-\widetilde{f}_{\mu} v\right) d x=0
$$

for all $v \in H_{0}^{1}(\Omega)$, with $K_{\mu}=g_{\mu} \nabla \Phi_{\mu}^{-1} \nabla \Phi_{\mu}^{-\top}$,
$\widetilde{b}_{\mu}=g_{\mu} \nabla \Phi_{\mu}^{-T} b_{\mu}, \widetilde{f}_{\mu}=g_{\mu} f_{\mu}, g_{\mu}=\operatorname{det}\left(\nabla \Phi_{\mu}\right)$.

Rozza, Huynh, Patera, 2007; Lassila, Rozza, 2010, ...

Map-then-discretize (MtD) approach

Consider $-\Delta U_{\mu}+b_{\mu} \cdot \nabla U_{\mu}=f_{\mu}$ in $\Omega_{\mu},\left.\quad U_{\mu}\right|_{\partial \Omega_{\mu}}=0$.
If $\Phi_{\mu}: \Omega \rightarrow \Omega_{\mu}$ is Lipschitz, $\widetilde{U}_{\mu}=U_{\mu} \circ \Phi_{\mu}$ solves

$$
\int_{\Omega}\left(K_{\mu} \nabla \widetilde{U}_{\mu} \cdot \nabla v+\widetilde{b}_{\mu} \cdot \nabla \widetilde{U}_{\mu} v-\widetilde{f}_{\mu} v\right) d x=0
$$

for all $v \in H_{0}^{1}(\Omega)$, with $\mathcal{K}_{\mu}=g_{\mu} \nabla \Phi_{\mu}^{-1} \nabla \Phi_{\mu}^{-\top}$,
$\widetilde{b}_{\mu}=g_{\mu} \nabla \Phi_{\mu}^{-\top} b_{\mu}, \widetilde{f}_{\mu}=g_{\mu} f_{\mu}, g_{\mu}=\operatorname{det}\left(\nabla \Phi_{\mu}\right)$.
Map-then-discretize.

1. Derive the mapped problem.
map
2. Devise FE and MOR methods for the mapped problem. discretize.
Rozza, Huynh, Patera, 2007; Lassila, Rozza, 2010, ...

Discretize-then-map (MtD) approach

Consider $-\Delta U_{\mu}+b_{\mu} \cdot \nabla U_{\mu}=f_{\mu}$ in $\Omega_{\mu},\left.\quad U_{\mu}\right|_{\partial \Omega_{\mu}}=0$. Introduce the mesh $\mathcal{T}_{\mathrm{hf}}$ of Ω and the associated space $\mathcal{X}_{\mathrm{hf}}$. discretize

Define the mapped mesh $\Phi_{\mu}\left(\mathcal{T}_{\mathrm{hf}}\right)$ and approximate the problem as follows:
map

$$
\text { with } r_{\mu}^{k}(u, v)=\int_{\mathrm{D}_{k, \phi_{\mu}}}^{\hat{-}^{-1}} \nabla u \cdot \nabla v+\left(b_{\mu} \cdot \nabla u-f_{\mu}\right) v d x \text {. }
$$

Washabaugh et al., 2016; Dal Santo, Manzoni, 2019.

Discretize-then-map (MtD) approach

Consider $-\Delta U_{\mu}+b_{\mu} \cdot \nabla U_{\mu}=f_{\mu}$ in $\Omega_{\mu},\left.\quad U_{\mu}\right|_{\partial \Omega_{\mu}}=0$. Introduce the mesh $\mathcal{T}_{\mathrm{hf}}$ of Ω and the associated space $\mathcal{X}_{\mathrm{hf}}$. discretize
Define the mapped mesh $\Phi_{\mu}\left(\mathcal{T}_{\mathrm{hf}}\right)$ and approximate the problem as follows:
map

$$
R_{\mu}^{\mathrm{hf}}\left(U_{\mu}^{\mathrm{hf}}, v\right)=\sum_{k=1} r_{\mu}^{k}\left(U_{\mu}^{\mathrm{hf}}, v\right)=0, \text { for all } v \in \mathcal{X}_{\mathrm{hf}, \Phi_{\mu}},
$$

$$
\text { with } r_{\mu}^{k}(u, v)=\int_{D_{k, \phi_{\mu}}}^{-1} \nabla u \cdot \nabla v+\left(b_{\mu} \cdot \nabla u-f_{\mu}\right) v d x \text {. }
$$

- The PDE model is left unchanged.
- MOR should be applied at algebraic level. Washabaugh et al., 2016; Dal Santo, Manzoni, 2019.

Comments (I): equivalence; discrete bijectivity

DtM involves evaluation of Φ at mesh nodes;

$$
\Psi_{k, \Phi}^{\mathrm{hf}}(x)=\sum_{i=1}^{\mathrm{i}} \Phi\left(x_{i, k}^{\mathrm{hf}}\right) \hat{\phi}_{i}(x)
$$

MtD requires evaluation of Φ and its derivatives at quadrature points.
Lemma: if $\Phi \circ \Psi_{k}^{\mathrm{hf}} \in \mathbb{P}_{p}$, DtM and MtD are equivalent.

Comments (I): equivalence; discrete bijectivity

DtM involves evaluation of Φ at mesh nodes;
$m_{\text {lp }}$

$$
\Psi_{k, \Phi}^{\mathrm{hf}}(x)=\sum_{i=1} \Phi\left(x_{i, k}^{\mathrm{hf}}\right) \hat{\phi}_{i}(x)
$$

MtD requires evaluation of Φ and its derivatives at quadrature points.
Lemma: if $\Phi \circ \psi_{k}^{\mathrm{hf}} \in \mathbb{P}_{p}$, DtM and MtD are equivalent.
DtM might fail for large non-smooth deformations.

Enforcement of discrete bijectivity might be needed.
Taddei, Zhang, JSC, 2021

Comments (II): optimal convergence of hf solver

Consider $-\partial_{x x} u=\sin (\pi x) \quad x \in \Omega=(0,1),\left.\quad u\right|_{x=0,1}=0$.
Let $\Phi: \Omega \rightarrow \Omega$ be piecewise-linear, and let $\mathcal{T}_{\text {hf }}$ be a uniform grid with N_{e} elements of degree 3.

Apply MtD, iso-parametric DtM and sub-parametric DtM.

Comments (II): optimal convergence of hf solver

Consider $-\partial_{x x} u=\sin (\pi x) \quad x \in \Omega=(0,1),\left.\quad u\right|_{x=0,1}=0$.
Let $\Phi: \Omega \rightarrow \Omega$ be piecewise-linear, and let $\mathcal{T}_{\text {hf }}$ be a uniform grid with N_{e} elements of degree 3 .

Apply MtD, iso-parametric DtM and sub-parametric DtM.
MtD fails to recover optimal rate.

DtM might have inverted elements.

DtM recovers optimal rate.

Comments (III): simplicity of implementation

Consider SUPG stabilization of the advection term:

$$
\int_{D_{k, \phi}}(-\Delta u+b \cdot \nabla u-f) \frac{b}{\|b\|_{2}} \cdot \nabla v d x=0 .
$$

Note that $\int_{D_{k, \phi}} \Delta u\left(\frac{b}{\|b\|_{2}} \cdot \nabla v\right) d x=$
$\int_{D_{k}}\left(\left(\nabla \Phi^{-T} \nabla\right) \cdot\left(\nabla \Phi^{-T} \nabla u\right)\right)\left(\frac{\nabla \Phi^{-1} b}{\|b\|_{2}} \cdot \nabla v\right) g d x$.

Comments (III): simplicity of implementation

Consider SUPG stabilization of the advection term:

$$
\int_{D_{k, \phi}}(-\Delta u+b \cdot \nabla u-f) \frac{b}{\|b\|_{2}} \cdot \nabla v d x=0
$$

Note that $\int_{D_{k, \phi}} \Delta u\left(\frac{b}{\|b\|_{2}} \cdot \nabla v\right) d x=$
$\int_{D_{k}}\left(\left(\nabla \Phi^{-T} \nabla\right) \cdot\left(\nabla \Phi^{-T} \nabla u\right)\right)\left(\frac{\nabla \Phi^{-1} b}{\|b\|_{2}} \cdot \nabla v\right) g d x$.
Implementation of MtD requires new assembly routines

- high implementation costs;
- second-order derivatives of Φ might not be available.

Comments (IV): hyper-reduction

$\mathcal{G}_{\mu}\left(U_{\mu}, v\right)=\sum_{k=1}^{N_{0}} \int_{D_{k}} \eta_{\mu}\left(x ; U_{\mu}\right) \cdot[v(x), \nabla v(x)] d x=0$.
Two strategies for hyper-reduction:

1. Affine approximation of integrand η_{μ} : EIM,...

$$
\begin{aligned}
& \eta_{\mu}\left(x ; U_{\mu}\right) \approx \sum_{q=1}^{Q} \eta_{\mu}\left(x_{q}^{\star} ; U_{\mu}\right) \xi_{q}(x) \text { for }\left\{x_{q}^{\star}\right\}_{q} \subset \Omega, \\
& \widehat{\mathcal{G}}_{\mu}\left(U_{\mu}, v\right)=\sum_{k=1}^{N_{e}} \int_{D_{k}} \widehat{\eta}_{\mu, Q}\left(x ; U_{\mu}\right) \cdot[v(x), \nabla v(x)] d x=0 .
\end{aligned}
$$

2. Reduced integration domain:

ECSW, EQP,...
$\widehat{\mathcal{G}}_{\mu}\left(U_{\mu}, v\right)=\sum_{k \in \mathrm{I}_{\mathrm{eq}}} \rho_{k}^{\mathrm{eq}} \int_{\mathrm{D}_{k}} \eta_{\mu}\left(x ; U_{\mu}\right) \cdot[v(x), \nabla v(x)] d x=0$.

Comments (IV): hyper-reduction

MtD copes with both hyper-reduction paradigms.
DtM requires the introduction of a reduced integration domain to avoid integration over Ω_{μ}.
${ }^{2}$ For DG discretizations, evaluation of Φ_{μ} at nodes of neighboring elements is also required.

Comments (IV): hyper-reduction

MtD copes with both hyper-reduction paradigms.
DtM requires the introduction of a reduced integration domain to avoid integration over Ω_{μ}.

- We rely on elementwise empirical quadrature for hyper-reduction. Farhat et al., 2015; Yano 2019.
- Application of EQ within the DtM framework is straightforward: given $\mu \in \mathcal{P}$, DtM requires evaluation of Φ_{μ} in all nodes of the sampled elements ${ }^{2}$.
${ }^{2}$ For DG discretizations, evaluation of Φ_{μ} at nodes of neighboring elements is also required.

Projection-based pMOR

Projection scheme: LSPG+EQ

Introduce reduced-order bases $\mathbb{Z} \in \mathbb{R}^{N, n}, Y \in \mathbb{R}^{N, j e s}$.
Define the weighted residual $R_{\mu}^{\mathrm{eq}}(u, v)=\sum_{k=1} \rho_{k}^{\mathrm{eq}} r_{\mu}^{k}(u, v)$.
EQ LSPG ROM: find $\widehat{\mathrm{U}}_{\mu} \in \arg \min _{\zeta \in \operatorname{col}(\mathbf{Z})} \sup _{\eta \in \operatorname{col}(\boldsymbol{Y})} \frac{R_{\mu}^{\mathrm{eq}}(\zeta, \eta)}{\|\eta\|_{\mathcal{Y}}}$.

Projection scheme: LSPG+EQ

Introduce reduced-order bases $Z \in \mathbb{R}^{N, n}, Y \in \mathbb{R}^{N, j e s}$.
Define the weighted residual $R_{\mu}^{\mathrm{eq}}(u, v)=\sum_{k=1} \rho_{k}^{\mathrm{eq}} r_{\mu}^{k}(u, v)$.
EQ LSPG ROM: find $\widehat{\mathrm{U}}_{\mu} \in \arg \min _{\zeta \in \operatorname{col}(\mathrm{Z})} \sup _{\eta \in \operatorname{col}(\boldsymbol{Y})} \frac{R_{\mu}^{\mathrm{eq}}(\zeta, \eta)}{\|\eta\|_{\mathcal{Y}}}$.
Implementation requires to address several points.

- Choice of trial ROB Z.
- Choice of test ROB Y and the norm $\|\cdot\|_{y}$.
- Choice of the EQ weights ρ^{eq}.

Taddei, Zhang, A discretize-then-map approach for the treatment of parameterized geometries in model order reduction, CMAME, 2021.

Residual assembly: FE routine

Notation: $\phi_{i, k}^{\mathrm{fe}} i=1, \ldots, n_{\mathrm{lp}}$ FE basis in the k-th element; e_{1}, \ldots, e_{D} canonical basis (D number of equations).

For $k=1, \ldots, N_{e}$
Compute $R_{i, k, d}^{\mathrm{un}}=r^{k}\left(\left.U\right|_{\mathrm{D}_{k, \Phi},}, \phi_{i, k}^{\mathrm{fe}} e_{d}\right)$,

$$
i=1 \ldots, n_{\mathrm{lp}}, d=1, \ldots, D .
$$

EndFor
$\left.\mathbf{R}^{\mathrm{hf}} \leftarrow\left\{R_{i, k, d}^{\mathrm{un}}\right\}\right\}_{i, k, d}, \quad \mathrm{R}^{\mathrm{hf}} \in \mathbb{R}^{N}$ FE vector assembly.

Residual assembly: FE routine

Notation: $\phi_{i, k}^{\mathrm{fe}} i=1, \ldots, n_{\mathrm{lp}}$ FE basis in the k-th element; e_{1}, \ldots, e_{D} canonical basis (D number of equations).

For $k=1, \ldots, N_{\text {e }}$
Compute $R_{i, k, d}^{\text {un }}=r^{k}\left(\left.U\right|_{D_{k, \phi},}, \phi_{i, k}^{\mathrm{fe}} e_{d}\right)$,
$i=1 \ldots, n_{\mathrm{lp}}, d=1, \ldots, D$.
EndFor
$\left.\mathbf{R}^{\mathrm{hf}} \leftarrow\left\{R_{i, k, d}^{\mathrm{un}}\right\}\right\}_{i, k, d}, \quad \mathrm{R}^{\mathrm{hf}} \in \mathbb{R}^{N}$ FE vector assembly.

- Computation of $\left\{R_{i, k, d}^{u n}\right\}_{i, d}$ relies on element-wise assembly routines that take as input $\left\{\Phi\left(x_{i, k}\right)\right\}_{i}$.
- Assembly of the FE vector is independent of the PDE.

Residual assembly: MOR routine

Notation: $\mathrm{Y}=\left[\psi_{1}, \ldots, \psi_{j_{\text {es }}}\right] \in \mathbb{R}^{N \cdot j_{\text {jes }}}$ test space; $\mathrm{T}_{i, k}$ index of the i-th node of the k-th element.
$Y_{i, k, d, j}^{u n}=Y_{\mathrm{T}_{i, k}+(d-1) N, j}$ unassembled test space, $\widehat{\mathbf{R}} \in \mathbb{R}^{j^{j e s}}$ reduced residual, $(\widehat{R})_{j}=R_{\mu}^{\text {eq }}\left(U, \psi_{j}\right)$.
For $k \in I_{\text {eq }}$
Compute $R_{i, k, d}^{\mathrm{un}}=r^{k}\left(\left.U\right|_{\mathrm{D}_{k, \phi},}, \phi_{i, k}^{\mathrm{fe}} e_{d}\right)$,

$$
i=1 \ldots, n_{\mathrm{lp}}, d=1, \ldots, D .
$$

EndFor
$(\widehat{\mathbb{R}})_{j}=\sum_{k \in \mathrm{I}_{\mathrm{eq}}} \rho_{k}^{\mathrm{eq}}\left(\sum_{i=1}^{n_{\mathrm{lp}}} \sum_{d=1}^{D} \mathbf{Y}_{i, k, d, j}^{\mathrm{un}} R_{i, k, d}^{\mathrm{un}}\right), j=1, \ldots, j_{\mathrm{es}}$.

Residual assembly: MOR routine

Notation: $\mathrm{Y}=\left[\psi_{1}, \ldots, \psi_{j_{\text {es }}}\right] \in \mathbb{R}^{N \cdot j_{\text {jes }}}$ test space; $\mathrm{T}_{i, k}$ index of the i-th node of the k-th element.
$\mathbf{Y}_{i, k, d, j}^{u n}=\mathbf{Y}_{\mathbb{T}_{i, k}+(d-1) N, j}$ unassembled test space, $\widehat{\mathbf{R}} \in \mathbb{R}^{j^{j e s}}$ reduced residual, $(\widehat{R})_{j}=R_{\mu}^{\text {eq }}\left(U, \psi_{j}\right)$.
For $k \in I_{\text {eq }}$
Compute $R_{i, k, d}^{\mathrm{un}}=r^{k}\left(\left.U\right|_{\mathrm{D}_{k, \phi},}, \phi_{i, k}^{\mathrm{fe}} e_{d}\right)$,
$i=1 \ldots, n_{\mathrm{lp}}, d=1, \ldots, D$.
EndFor
$(\widehat{\mathbb{R}})_{j}=\sum_{k \in \mathrm{I}_{\mathrm{eq}}} \rho_{k}^{\mathrm{eq}}\left(\sum_{i=1}^{n_{\mathrm{p}}} \sum_{d=1}^{D} \mathbf{Y}_{i, k, k, j}^{\mathrm{un}} R_{i, k, d}^{\mathrm{un}}\right), j=1, \ldots, j_{\mathrm{es}}$.

- MOR assembly exploits available FE routines.
- Geometry variations don't influence MOR assembly.

Application to 2D RANS

Ahmed's body problem

Closure model: SA. Discretization: stab P2-P2 FEM. $R e=\frac{u_{\text {in }} H_{c}}{\nu}=3 \cdot 10^{3}, \mu \in\left[5^{\circ}, 50^{\circ}\right]$.

Geometry parametrization

We consider a piecewise-bilinear mapping (Gordon-Hall).
FE mesh is not conforming with the coarse-grained partition.

Numerical results

Relative error averaged over 10 out-of-sample configurations.

Error analysis

Hyper-reduction

Legend: projection $\boldsymbol{-}$, ROM with HF quadrature \square, tol $_{\mathrm{eq}}=10^{-6} \longrightarrow$, tol $_{\mathrm{eq}}=10^{-10} \longrightarrow$, tol ${ }_{\mathrm{eq}}=10^{-14} \longrightarrow$.

Conclusions and perspectives

Summary

Summary

- We discuss the treatment of parameterized geometries in projection-based pMOR.
- We consider two approaches: 1. Discretize-then-Map;

2. Map-then-Discretize.

Summary

Summary

- We discuss the treatment of parameterized geometries in projection-based pMOR.
- We consider two approaches: 1. Discretize-then-Map;

2. Map-then-Discretize.

Take-aways

- DtM is simpler to implement, and can be used in combination with non-smooth mappings.
- MtD copes with a broader class of hyper-reduction methods (\rightarrow possibly larger speedups), and does not require discrete bijectivity wrt the mesh.

Thank you for your attention!

For more information, visit the website:
math.u-bordeaux.fr/~ttaddei/ .

1. Taddei, Zhang; A discretize-then-map approach for the treatment of parameterized geometries in model order reduction, CMAME, 2021.
2. Ferrero, Taddei, Zhang; Registration-based model reduction of parameterized two-dimensional conservation laws, Arxiv preprint 2021.
