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Objective
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Model reduction in parametric domains

The goal of parameterized Model Order Reduction
(pMOR) is to reduce the marginal cost associated with
the solution to parameterized problems.

pMOR is motivated by real-time and many-query problems
design and optimization, UQ, control.

The aim of this talk is to discuss the treatment of
parameterized geometries in projection-based pMOR.

We denote by

µ = [µ1, . . . , µP ] ∈ P ⊂ RP a vector of parameters;

{Ωµ : µ ∈ P} a family of parametric domains;

Uµ : Ωµ → RD the solution field.
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Mapped formulation

We recast the problem in a parameter-independent domain
Ω through a mapping Φ such that

Φµ is invertible and Ωµ = Φµ(Ω), for all µ ∈ P .

Task 1: construction of Φ; RBF, FFD, ...

Task 2:

Agenda.

1. two paradigms to deal with geometry variations;

2. projection-based pMOR;

3. application to 2D RANS.
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Treatment of parametric geometries in pMOR
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Preliminary definitions

Define the mesh Thf =
(
{xhf

j }j , T
)
, with nodes {xhf

j }j and
connectivity matrix T, and the associated FE space Xhf .

Given w ∈ Xhf , denote by w ∈ RN the associated vector
representation.

Given Φ : Ω→ Ω′, define the mapped mesh Φ (Thf) =(
{Φ
(
xhf
j

)
}j , T

)
.

Definition. Φ is Thf-bijective if the element mappings

Ψhf
k,Φ(x) =

nlp∑
i=1

Φ(xhf
i ,k)φ̂i(x), xhf

i ,k = xhf
Ti,k ,

are invertible.
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Map-then-discretize (MtD) approach

Consider −∆Uµ + bµ · ∇Uµ = fµ in Ωµ, Uµ
∣∣
∂Ωµ

= 0.

If Φµ : Ω→ Ωµ is Lipschitz, Ũµ = Uµ ◦ Φµ solves∫
Ω

(
Kµ∇Ũµ · ∇v + b̃µ · ∇Ũµ v − f̃µ v

)
dx = 0,

for all v ∈ H1
0 (Ω), with Kµ = gµ∇Φ−1

µ ∇Φ−Tµ ,
b̃µ = gµ∇Φ−Tµ bµ, f̃µ = gµ fµ, gµ = det(∇Φµ).

Map-then-discretize.
1. Derive the mapped problem. map

2. Devise FE and MOR methods for the mapped problem.
discretize.

Rozza, Huynh, Patera, 2007; Lassila, Rozza, 2010, ...
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Discretize-then-map (MtD) approach

Consider −∆Uµ + bµ · ∇Uµ = fµ in Ωµ, Uµ
∣∣
∂Ωµ

= 0.

Introduce the mesh Thf of Ω and the associated space Xhf .
discretize

Define the mapped mesh Φµ(Thf) and approximate the
problem as follows: map

Rhf
µ (Uhf

µ , v) =

Ne∑
k=1

r kµ (Uhf
µ , v) = 0, for all v ∈ Xhf,Φµ

,

with r kµ (u, v) =
∫
Dk,Φµ
∇u · ∇v + (bµ · ∇u − fµ)v dx .

• The PDE model is left unchanged.
• MOR should be applied at algebraic level.

Washabaugh et al., 2016; Dal Santo, Manzoni, 2019.
9



Discretize-then-map (MtD) approach

Consider −∆Uµ + bµ · ∇Uµ = fµ in Ωµ, Uµ
∣∣
∂Ωµ

= 0.

Introduce the mesh Thf of Ω and the associated space Xhf .
discretize

Define the mapped mesh Φµ(Thf) and approximate the
problem as follows: map

Rhf
µ (Uhf

µ , v) =

Ne∑
k=1

r kµ (Uhf
µ , v) = 0, for all v ∈ Xhf,Φµ

,

with r kµ (u, v) =
∫
Dk,Φµ
∇u · ∇v + (bµ · ∇u − fµ)v dx .

• The PDE model is left unchanged.
• MOR should be applied at algebraic level.

Washabaugh et al., 2016; Dal Santo, Manzoni, 2019.
9



Comments (I): equivalence; discrete bijectivity

DtM involves evaluation of Φ at mesh nodes;

Ψhf
k,Φ(x) =

mlp∑
i=1

Φ(xhf
i ,k)φ̂i(x)

MtD requires evaluation of Φ and its derivatives at
quadrature points.
Lemma: if Φ ◦Ψhf

k ∈ Pp, DtM and MtD are equivalent.

DtM might fail for large
non-smooth deformations.

Enforcement of discrete
bijectivity might be needed.

Taddei, Zhang, JSC, 2021

A
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Comments (II): optimal convergence of hf solver

Consider −∂xxu = sin(πx) x ∈ Ω = (0, 1), u|x=0,1 = 0.

Let Φ : Ω→ Ω be piecewise-linear, and let Thf be a
uniform grid with Ne elements of degree 3.

Apply MtD, iso-parametric DtM and sub-parametric DtM.
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Comments (III): simplicity of implementation

Consider SUPG stabilization of the advection term:∫
Dk,Φ

(−∆u + b · ∇u − f )
b

‖b‖2
· ∇v dx = 0.

Note that
∫
Dk,Φ

∆u

(
b

‖b‖2
· ∇v

)
dx =∫

Dk

((
∇Φ−T ∇

)
·
(
∇Φ−T ∇ u

)) (∇Φ−1b

‖b‖2
· ∇v

)
g dx .

Implementation of MtD requires new assembly routines

• high implementation costs;

• second-order derivatives of Φ might not be available.
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Comments (IV): hyper-reduction

Gµ(Uµ, v) =

Ne∑
k=1

∫
Dk
ηµ (x ;Uµ) · [v(x),∇v(x)] dx = 0.

Two strategies for hyper-reduction:
1. Affine approximation of integrand ηµ: EIM,...

ηµ (x ;Uµ) ≈
Q∑

q=1

ηµ
(
x?q ;Uµ

)
ξq(x) for {x?q}q ⊂ Ω,

Ĝµ(Uµ, v) =

Ne∑
k=1

∫
Dk
η̂µ,Q (x ;Uµ) · [v(x),∇v(x)] dx = 0.

2. Reduced integration domain: ECSW, EQP,...

Ĝµ(Uµ, v) =
∑
k∈Ieq

ρeq
k

∫
Dk
ηµ (x ;Uµ) · [v(x),∇v(x)] dx = 0.

13



Comments (IV): hyper-reduction

MtD copes with both hyper-reduction paradigms.

DtM requires the introduction of a reduced integration
domain to avoid integration over Ωµ.

• We rely on elementwise empirical quadrature for
hyper-reduction. Farhat et al., 2015; Yano 2019.

• Application of EQ within the DtM framework is
straightforward: given µ ∈ P , DtM requires evaluation of
Φµ in all nodes of the sampled elements2.

2For DG discretizations, evaluation of Φµ at nodes of neighboring elements is
also required.
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Projection-based pMOR
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Projection scheme: LSPG+EQ

Introduce reduced-order bases Z ∈ RN,n, Y ∈ RN,jes.

Define the weighted residual Req
µ (u, v) =

Ne∑
k=1

ρeq
k r

k
µ (u, v).

EQ LSPG ROM: find Ûµ ∈ arg min
ζ∈col(Z)

sup
η∈col(Y)

Req
µ (ζ,η)

‖η‖Y
.

Implementation requires to address several points.
• Choice of trial ROB Z.
• Choice of test ROB Y and the norm ‖ · ‖Y .
• Choice of the EQ weights ρeq.
Taddei, Zhang, A discretize-then-map approach for the treatment of
parameterized geometries in model order reduction, CMAME, 2021.
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Residual assembly: FE routine

Notation: φfe
i ,k i = 1, . . . , nlp FE basis in the k-th element;

e1, . . . , eD canonical basis (D number of equations).

For k = 1, . . . ,Ne
Compute Run

i ,k ,d = r k
(
U |Dk,Φ, φfe

i ,ked
)
,

i = 1 . . . , nlp, d = 1, . . . ,D.
EndFor

Rhf ← {Run
i ,k,d}i ,k,d , Rhf ∈ RN FE vector assembly.

• Computation of {Run
i ,k,d}i ,d relies on element-wise

assembly routines that take as input {Φ(xi ,k)}i .
• Assembly of the FE vector is independent of the PDE.

17



Residual assembly: FE routine

Notation: φfe
i ,k i = 1, . . . , nlp FE basis in the k-th element;

e1, . . . , eD canonical basis (D number of equations).

For k = 1, . . . ,Ne
Compute Run

i ,k ,d = r k
(
U |Dk,Φ, φfe

i ,ked
)
,

i = 1 . . . , nlp, d = 1, . . . ,D.
EndFor

Rhf ← {Run
i ,k,d}i ,k,d , Rhf ∈ RN FE vector assembly.

• Computation of {Run
i ,k ,d}i ,d relies on element-wise

assembly routines that take as input {Φ(xi ,k)}i .
• Assembly of the FE vector is independent of the PDE.

17



Residual assembly: MOR routine

Notation: Y = [ψ1, . . . ,ψjes] ∈ RN,jes test space; Ti ,k
index of the i -th node of the k-th element.
Yun

i ,k,d ,j = YTi,k+(d−1)N,j unassembled test space, R̂ ∈ Rjes

reduced residual,
(
R̂
)
j

= Req
µ (U , ψj).

For k ∈ Ieq
Compute Run

i ,k,d = r k
(
U |Dk,Φ, φfe

i ,ked
)
,

i = 1 . . . , nlp, d = 1, . . . ,D.
EndFor(
R̂
)
j

=
∑
k∈Ieq

ρeq
k

( nlp∑
i=1

D∑
d=1

Yun
i ,k ,d ,jR

un
i ,k ,d

)
, j = 1, . . . , jes.

• MOR assembly exploits available FE routines.
• Geometry variations don’t influence MOR assembly.
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Application to 2D RANS
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Ahmed’s body problem

Closure model: SA. Discretization: stab P2-P2
FEM. Re = uinHc

ν = 3 · 103, µ ∈ [5o, 50o].

µ

hb

L

HcδR
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Geometry parametrization

We consider a piecewise-bilinear mapping (Gordon-Hall).

FE mesh is not conforming with the coarse-grained
partition.
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Numerical results

Relative error averaged over 10 out-of-sample
configurations.
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Conclusions and perspectives
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Summary

Summary

• We discuss the treatment of parameterized geometries in
projection-based pMOR.

• We consider two approaches: 1. Discretize-then-Map;
2. Map-then-Discretize.

Take-aways
• DtM is simpler to implement, and can be used in
combination with non-smooth mappings.

• MtD copes with a broader class of hyper-reduction
methods (→ possibly larger speedups), and does not
require discrete bijectivity wrt the mesh.
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Thank you for your
attention!

For more information, visit the website:

math.u-bordeaux.fr/~ttaddei/ .

1. Taddei, Zhang; A discretize-then-map approach for the treatment
of parameterized geometries in model order reduction, CMAME,
2021.

2. Ferrero, Taddei, Zhang; Registration-based model reduction of
parameterized two-dimensional conservation laws, Arxiv preprint
2021.
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