

AKTIENGESELLSCHAFT

GROUP INNOVATION

REDUCED ORDER MODELS FOR INTERACTIVE AERODYNAMIC VEHICLE DESIGN

MARKUS MROSEK AND CARSTEN OTHMER, 21.09.2021 VOLKSWAGEN AG

AGENDA

- 1. Volkswagen as a Partner in ARIA
- 2. Interactive Aerodynamic Design: Pre-ARIA Status
- 3. The Volkswagen ARIA Test Case
- 4. First ARIA Results of the Hybrid Neural Network/ROM Approach

PEOPLE

• Markus Mrosek, MSc Mechan. Eng., PhD Candidate at VW since 09/2017

• Carsten Othmer, PhD in Physics, Senior Researcher and Project Lead, at Volkswagen since 2002

- Volkswagen AG, Wolfsburg, Germany
- Volkswagen Group Innovation

AKTIENGESELLSCHAFT

VOLKSWAGEN

MOTIVATION

Problem: Iterative loop between aesthetic design and aerodynamic computation: 12h up to several days **Solution:** Real-time aerodynamic prediction for interactive aerodynamic design

Required: Accurate Reduced Order Model (ROM)

VOLKSWAGEN

CHARACTERISTICS OF THE REAL-LIFE APPLICATION EXAMPLE: 6-DIMENSIONAL JETTA

- ANSA[®] FFD boxes, 6 parameters in the rear
- c_d and flow fields from OpenFOAM time-averaged DDES
- 103M cells, 4 sec, averaged over the last 2 (= 23,000 core-hours)
- 100 Latin Hypercube samples

a) Rear roof lowering: 0mm (top), +50mm (bottom) b) Trunk height: -30mm (top), +30mm (bottom) c) Trunk length: -50mm (top), +100mm (bottom) d) Rear lateral tapering: -60mm (top), +50mm (bottom)

e) Rear end edge position: -70mm (top), +30mm (bottom) f) Rear end depression:
-15mm (top), 0mm (bottom)

CURRENT WORKHORSE: POD + I

Interpolation of base coefficients with Kriging or Thin-Plate-Splines [SAE-06-12-03-0016]

VOLKSWAGEN

HOW IT LOOKS LIKE

Paraview plugin for interactive visualization (by Navasto, Berlin)

TEST CASE FOR ARIA: AHMED BODY CASE CHARACTERISTICS

- External aero "classic" [Ahmed et al., 1984], setup created with the SISSA team
- Very coarse on purpose; still physically sensible results

Parameters	Type of parametrisation	CFD-Model	#Cells	#Snapshots	CPU-time / snapshot [core hours]	Storage space / snapshot	Total Storage space
Slant angle: 15-35°	RBF for surface and volume mesh	DES (pimpleFoam)	0.2M	50	16	80MB (1 timestep)	4GB (1 timestep)
		RANS (simpleFoam)	0.2M	50	0.5	80MB	4GB

TEST CASE FOR ARIA: AHMED BODY PREDICTION QUANTITIES AND ERROR METRICS

Quantities to be predicted:

- Fields:
 - Wall shear stress and pressure on Ahmed body surface
 - Pressure and vectorial velocity in the volume around the Ahmed body (whole domain)

AKTIENCECELICCUA

- Coefficients:
 - Drag coefficient, lift coefficient

Error metrics:

- Fields: $\delta_{y} = \frac{\|y \hat{y}\|_{2}}{\|y\|_{2}}$ (y: CFD field vector, \hat{y} : ROM field vector)
- Coefficients: $\delta_c = \frac{|c \hat{c}|}{|c|}$ (c: CFD-predicted coefficient, \hat{c} : ROM-predicted coefficient)

AGENDA

- 1. Volkswagen as a Partner in ARIA
- 2. Interactive Aerodynamic Design: Pre-ARIA Status
- 3. The Volkswagen ARIA Test Case
- 4. First ARIA Results of the Hybrid Neural Network/ROM Approach

Slant angle: 15 - 22.8 degrees

- 100 snapshots saved per geometry (every 20 iterations out of 2000) → 1000 snapshots
- Goal is the prediction of converged solution after 2000 iterations

POD EIGENVALUES

- Separate POD for velocity, pressure and eddy viscosity based on 1000 snapshots
- 30 modes kept for all three fields

HYBRID NEURAL NETWORK REDUCED ORDER MODEL

- SIMPLE algorithm for full order model (FOM) and ROM
- Equations for **velocity** and **pressure** are Galerkin projected and then solved
- Eddy viscosity modeled by Neural Network
 - Inputs: Slant angle, POD coeffs velocity
 - Outputs: POD coeffs eddy viscosity

• For details, see Zancanaro et al., Hybrid Neural Network Reduced Order Modelling for Turbulent Flows with Geometric Parameters, Fluids 2021

DRAG COEFFICIENT PREDICTIONS

FIELD PREDICTIONS

Slant angle [°]

VELOCITY FIELD PREDICTIONS

ROM - FOM

(a) Test sample with slant angle 15.4°

1

(b) Test sample with slant angle 22.8°

PRESSURE FIELD PREDICTIONS

SUMMARY AND FUTURE WORK

Summary:

- Hybrid Neural Network Reduced Order Model successfully applied to Ahmed body test case
- Accurate predictions for velocity and eddy viscosity, while pressure field predictions still show deficiencies

Future work:

- Improve accuracy of pressure field predictions
- Hyper reduction to decrease prediction times
- Move from RANS to DES

