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Motivation: parametrized aerodynamics

Examples: prediction of lift, drag, heat transfer, . . .

• over range of operating conditions

• under geometry variations

with applications to parametric study, optimization, uncertainty quantification, . . .

transonic RANS flow over ONERA M6 supersonic Euler flow over cylinder

Challenge: transonic and supersonic flows exhibit parameter-dependent shocks
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Reduction of parameter-dependent discontinuities: n-width barrier

Fundamental issue: linear subspace approximation ill-suited for
advection-dominated features (slowly decay Kolmogorov n-width)
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One potential approach: mapped snapshots

Idea:

• apply parameter-dependent domain mapping to align features

• use linear subspace in reference domain to reduce dimension

• push forward to physical domain

Reference basis

Φh,1 : X 7→ a exp

[
−
(x
b

)2
]
H(−x)

Domain mapping

Gτ : X 7→ X + τ(1−X2)

Physical basis

ϕh,1 : x 7→ Φh,1(G−1
τ (x))
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Note: the idea readily extends to 2D and 3D.
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Feature alignment improves compressibility of snapshots
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Snapshots (top), first two POD modes (middle), and decay of energy (bottom)
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Test Case I: transonic quasi-1d nozzle

Goal: explore and assess different methods in the simplest setting

Configuration: steady, inviscid flow of an ideal gas through a parametrized nozzle,
modeled as a one-dimensional conservation law

f(q),x = s(q) in (0, 10),

with

q =

 Aρ

Aρv

AρE

 , f(q) =

 Aρv

A(ρv2 + P (q))

Av(ρE + P (q))

 , s(q) =

 0

P (q)A,x

0

 ,

where ρ, v, E is the density, velocity, and total energy of the fluid, respectively,
and pressure is given by P (q) = (γ − 1)(ρE − ρv2/2), and γ = 1.4.
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Test Case I Example: original vs mapped snapshots
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Original density snapshot at µ ∈ {0.5, 0.875, 1.25, 1.625}

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

x

D
en

si
ty

Mapped density snapshot at µ ∈ {0.5, 0.875, 1.25, 1.625}
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Test Case I Example: rapid error decay with nonlinear manifold
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Left : Convergence of the singular values of the non-aligned ( ) and aligned
( ) snapshot matrices (101 training parameters).

Right : Convergence of the maximum relative L1(Ω0) error over the training set for
the fixed-domain ROM ( ) and ROM-IFT ( ).

Goal: explore and assess different approaches in this simplest setting
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Test Case II: transonic Gaussian bump (I)

Goal: assess methods for transonic flows with shocks in parameterized geometries

Configuration:

• Domain Ω(h) = {x = (x1, x2) : |x1| < 1.5, he−25x2
1 < x2 < 0.8}

• Compressible Euler equations for ideal gases

• Parametrized by Mach: M∞ ∈ [0.58, 0.78], bump height h ∈ [0.05, 0.065]

Ω
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Test Case II: transonic Gaussian bump (II)

Visualization: behavior of the Mach number for several parameter values.

(a) µ = (0.05, 0.58) (b) µ = (0.05, 0.78) (c) µ = (0.065, 0.78)

Challenges: shock developed for M∞ ≳ 0.65; shock location and shape sensitive to
parameter variations.

Simplifications: topology of the shock is constant for all parameters; exact
geometry parameterization available for this problem.

Shock topology changes and complex geometry parameterizations will be
considered in separate test cases.
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Test Case III: Supersonic cylinder

Goal: assess methods for bow shocks in supersonic flows

Configuration:

• Compressible Euler equations
• Parametrized by Mach: M∞ ∈ [2, 4]

M∞ = 2.0 M∞ = 3.0

M∞ = 4.0

1 2.5 4 5.5 7

Density 11 / 13



Assessment metrics

Accuracy: as a function of ROM “size” N and Nsnapshot

• L2 norm (for problems with known solution)

• Violation of conserved quantities (e.g., global enthalpy)

• Output error (e.g., lift, drag, average temperature on surface)

Offline training cost:

• Cost to construct a ROM of “size” N given Nsnapshot snapshots (e.g., POD,
NN training, hyperreduction)

• Motivation: In aerodynamic design applications, turnaround times and
computational budgets make offline cost and Nsnapshot important
considerations

Online evaluation cost:

• ROM evaluation cost vs “size” N
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Summary

Motivation: efficient MOR for transonic/supersonic aerodynamic flows

Challenge: parameter-dependent shocks ⇒ slow n-width decay

Goal: develop, assess, and compare various nonlinear MOR techniques

Test cases:

1. transonic quasi-1d nozzle

2. transonic Gaussian bump

3. supersonic cylinder

Assessment metrics: accuracy, offline training cost, online evaluation cost
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