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Mbotivation: parametrized aerodynamics

Examples: prediction of lift, drag, heat transfer, ...

e over range of operating conditions

e under geometry variations

with applications to parametric study, optimization, uncertainty quantification, ...

-
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transonic RANS flow over ONERA M6 supersonic Euler flow over cylinder

Challenge: transonic and supersonic flows exhibit parameter-dependent shocks
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Reduction of parameter-dependent discontinuities: n-width barrier

Fundamental issue: linear subspace approximation ill-suited for

advection-dominated features (slowly decay Kolmogorov n-width)
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Reduction of parameter-dependent discontinuiti idth barrier

T

Fundamental issue: linear subspace approximation ill-suited for

advection-dominated features (slowly decay Kolmogorov n-width)
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One potential approach: mapped snapshots

Idea:

e apply parameter-dependent domain mapping to align features
e use linear subspace in reference domain to reduce dimension

e push forward to physical domain
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Note: the idea readily extends to 2D and 3D.
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Feature alignment improves compressibility of snapshots
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Snapshots (top), first two POD modes (middle), and decay of energy (bottom)
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Test Case I: transonic quasi-1d nozzle

Goal: explore and assess different methods in the simplest setting

Configuration: steady, inviscid flow of an ideal gas through a parametrized nozzle,

modeled as a one-dimensional conservation law

(@), = s(q) in (0,10),

with
Ap Apv 0
q= [Apv|, fl)=[A(p?*+P(q)|, s(@)=|P@)As
ApE Av(pE + P(q))

where p, v, E is the density, velocity, and total energy of the fluid, respectively,
and pressure is given by P(q) = (v — 1)(pE — pv?/2), and v = 1.4.

3
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Test Case I Example: original vs mapped snapshots
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Mapped density snapshot at p € {0.5,0.875,1.25,1.625}
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Test Case I Example: rapid error decay with nonlinear manifold
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Left: Convergence of the singular values of the non-aligned (—e—) and aligned
(—=—) snapshot matrices (101 training parameters).

Right: Convergence of the maximum relative L()y) error over the training set for
the fixed-domain ROM (——) and ROM-IFT (—=—).

Goal: explore and assess different approaches in this simplest setting

8/13



Test Case II: transonic Gaussian bump (I)

Goal: assess methods for transonic flows with shocks in parameterized geometries
Configuration:
e Domain Q(h) = {z = (x1,22) : |z1] < 1.5, he 251 < 25 < 0.8}

e Compressible Euler equations for ideal gases

e Parametrized by Mach: M., € [0.58,0.78], bump height h € [0.05,0.065]

()

9/13



Test Case II: transonic Gaussian bump (II)

Visualization: behavior of the Mach number for several parameter values.
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Challenges: shock developed for M., 2 0.65; shock location and shape sensitive to

~

parameter variations.

Simplifications: topology of the shock is constant for all parameters; exact

geometry parameterization available for this problem.

Shock topology changes and complex geometry parameterizations will be
considered in separate test cases.
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Test Case III: Supersonic cylinder

Goal: assess methods for bow shocks in supersonic flows
Configuration:

e Compressible Euler equations
e Parametrized by Mach: M, € [2,4]

o = 2.0

M =3.0
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Assessment metrics

Accuracy: as a function of ROM “size” N and Ngnapshot

e L? norm (for problems with known solution)
e Violation of conserved quantities (e.g., global enthalpy)

e Output error (e.g., lift, drag, average temperature on surface)

Offline training cost:

e Cost to construct a ROM of “size” N given Ngnapshot sShapshots (e.g., POD,
NN training, hyperreduction)

e Motivation: In aerodynamic design applications, turnaround times and
computational budgets make offline cost and Ngnapshot important
considerations

Online evaluation cost:

e ROM evaluation cost vs “size” N
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Summary

Motivation: efficient MOR, for transonic/supersonic acrodynamic flows
Challenge: parameter-dependent shocks = slow n-width decay
Goal: develop, assess, and compare various nonlinear MOR techniques
Test cases:

1. transonic quasi-1d nozzle

2. transonic Gaussian bump

3. supersonic cylinder

Assessment metrics: accuracy, offline training cost, online evaluation cost
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