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Motivation: electronic structure calculation for molecules

Computation of the ground state of electrons in a molecule: electric,
optical, magnetic properties, prediction of chemical reactions, computation of

inter-atomic or inter-molecular potentials for MD simulations...
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Electronic Schrödinger model: Born-Oppenheimer approximation
Let us consider a physical system composed of:
• M nuclei, composed of protons and neutrons, that are assumed to be

(fixed) classical point charges whose:
• positions in R3 are denoted by R1, . . . , RM ∈ R3;
• electric charges are denoted by Z1, . . . , ZM > 0.

• N electrons, considered as quantum particles, and represented by a
complex-valued wavefunction ψ(x1, . . . , xN), where for all 1 ≤ i ≤ N,
xi ∈ R3. Since electrons are fermionic particles, ψ is antisymmetric with
respect to permutation of the order of the variables.

Physical interpretation: |ψ(x1, · · · , xN)|2 represents the probability
density of finding the N electrons at positions (x1, · · · , xN) ∈ R3N

‖ψ‖2
L2(R3N ) =

∫
R3N
|ψ|2 = 1.

Electronic (one or two-body) density:

ρ(x) =

∫
R3(N−1)

|ψ(x , x2, . . . , xN)|2, τ(x , y) =

∫
R3(N−2)

|ψ(x , y , x3, . . . , xN)|2,
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Electronic Schrödinger model: Born-Oppenheimer approximation

Let µ = (R1, · · · ,RM ) ∈ R3M the set of positions of the nuclei.

Vµ(x) = −
M∑

k=1

Zk

|x − Rk |
, x ∈ R3.

For a given value of µ, the corresponding ground state electronic
wavefunction ψµ is solution to the eigenvalue problem (electronic
SchrÃPdinger problem)

Hµψµ = Eµψµ,

with

Hµ = −∆x1,...,xN +
N∑

i=1

Vµ(xi ) +
∑

1≤i<j≤N

1
|xi − xj |

Problem: Linear eigenvalue problem for functions defined on the
high-dimensional space R3N .
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Density Functional Theory and Kohn-Sham models

Instead, quantum chemists prefer to solve approximate problems, which
enable to obtain approximations of the electronic one-body density ρµ(x) (or
electronic two-body densities τµ(x , y)).

These approximate models boil down to solving nonlinear eigenvalue
problems for functions defined on R3 (or R6).

Find Φµ(x) = (φ1,µ(x), · · · , φN,µ(x)) solution to
(−∆x + Vµ(x) + W [ρµ](x))φi,µ(x) = εi,µφi,µ(x)

ρµ(x) = 1
N

∑N
i=1 |φi,µ(x)|2

Example: W [ρ](x) =
∫

y∈R3
1
|x−y|ρ(y) dy
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Roothan algorithms

In practice, these problems are solved by means of iterative algorithms:
starting from an initial guess ρ0

µ for the electronic density,

Iteration k :
1. From ρk

µ, compute W k
µ := W [ρk

µ]

2. Compute Φk
µ = (φk

1,µ, . . . , φ
k
N,µ) solution to

(−∆ + Vµ + W k
µ)φk

i,µ = εk
i,µφ

k
i,µ

3. Compute ρk+1
µ (x) = 1

N

∑N
i=1 |φ

k
i,µ(x)|2.

Objective: We would like to have numerical methods which enable to
quickly compute ρµ for many values of µ: ROM!

Challenge: The computational cost of these iterative algorithms very
strongly depend on the value of the initial guess for the electronic density.
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Model-order reduction: interpolation

Approach: Compute an approximation of ρµ as an interpolation in a ”good
sense” from a few well-selected snapshots ρµ1 , . . . , ρµn .

Important property: If the set of positions of the nuclei µ = (R1, . . . ,Rk ) is
shifted by a translation vector b, (µ′ = (R1 + b, . . . ,RM + b)), then the
electronic density is also shifted by the same translation vector:

ρµ′(x) = ρµ(x + b)

Similar issue as in ROMs for transport-dominated problems...

Use of optimal transport theory to build interpolations which respect this
property.

9 / 30



Motivation: model-order reduction for electronic structure calculations Introduction to optimal transport, Wasserstein spaces and barycenters Modified Wasserstein metric for mixtures

Optimal transport for model order reduction

Non-exhaustive list...
• [Iollo, Lombardi, 2014]: transport maps computed as linear combinations of

optimal transport maps
• [VE, Lombardi, Mula, Vialard, 2020]: use of Wasserstein barycenters (1d) with

greedy algorithms
• [Iollo, Taddei, 2022]: use of Gaussian models
• [Do, Feydy, Mula,2023]: extension of the Wasserstein barycenter methodology

to higher-dimensional settings
• [Rim, Peherstorfer, Mandli, 2023]: towards a Galerkin approach combined with

optimal transport

10 / 30



Motivation: model-order reduction for electronic structure calculations Introduction to optimal transport, Wasserstein spaces and barycenters Modified Wasserstein metric for mixtures

Outline of the talk

Motivation: model-order reduction for electronic structure calculations

Introduction to optimal transport, Wasserstein spaces and barycenters

Modified Wasserstein metric for mixtures

11 / 30



Motivation: model-order reduction for electronic structure calculations Introduction to optimal transport, Wasserstein spaces and barycenters Modified Wasserstein metric for mixtures

Probability measures with finite second-order moments

Let d ∈ N∗ and Ω ⊂ Rd an open domain.

Let P2(Ω) denote the set of probability measures u on Ω with finite
second-order moments, i.e.∫

Ω

u(dx) = 1,
∫

Ω

(1 + |x |)2 u(dx) < +∞.

Example: Let ρ ∈ L1(Ω) such that

ρ ≥ 0,
∫

Ω

ρ(x) dx = 1,
∫

Ω

(1 + |x |)2ρ(x) dx < +∞. (1)

Then, the probability measure u(dx) := ρ(x) dx belongs to P2(Ω).
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Wasserstein space

The 2-Wasserstein (or Kantorovich-Rubinstein) metric is a distance
function defined between two probability measures uρ1, rho2 ∈ P2(Ω) and is
denoted by

W2(ρ1, ρ2).

The set (P2(Ω),W2) then defines a metric space, called the Wasserstein
space.

Its precise definition will come later... Patience!

I first would like to explain to you the interest of this distance with respect to
interpolation properties.
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Interpolation in the Wasserstein or L2(Ω) space
Let ρ1, ρ2 ∈ L2(Ω) ∩ L1(Ω) which satisfy (1).

Let t ∈ [0, 1] and consider the two following problems:

• Interpolation in the L2(Ω) space: Find ρL2

t ∈ L2(Ω) such that

ρL2

t = argmin
ρ∈L2(Ω)

(1− t)‖ρ− ρ1‖2
L2(Ω) + t‖ρ− ρ2‖2

L2(Ω).

Then, we all know that the solution is ρL2

t is the barycentric combination
of ρ1 and ρ2, i.e.

ρL2

t := (1− t)ρ1 + tρ2.

• Interpolation in the Wasserstein space: Find ρW2
t ∈ P2(Ω) such that

ρ
W2
t = argmin

ρ∈P2(Ω)

(1− t)W2(ρ, ρ1)2 + tW2(ρ, ρ2)2.

The measure ρW2
t is unique and is called the McCann’s interpolant

between ρ1 and ρ2.

What does ρL2

t and ρW2
t look like?
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Comparison between the Wasserstein and L2(Ω) interpolation
[Kolouri et al. 2016]

ρ
W2
t ρL2

t

Interesting property of the Wasserstein metric:
If ρ2 = ρ1(· − b) for some b ∈ Rd , then it holds that

ρ
W2
t = ρ1(· − tb).
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Barycenters in the Wasserstein orL2(Ω) space
Let n ∈ N∗ and (ρ1, ρ2, · · · , ρn) ∈ P2(Ω)n. Let Λ := (λ1, · · · , λn) ∈ [0, 1]n such
that

∑n
i=1 λi = 1, and consider the minimization problem:

Find ρW2
Λ ∈ P2(Ω) such that

ρ
W2
Λ = argmin

ρ∈P2(Ω)

n∑
i=1

λiW2(ρ, ρi )
2.

The measure ρW2
Λ is unique and is called the Wasserstein barycenter of

(ρ1, . . . , ρn) with weights Λ.

This object is the Wasserstein counterpart of the L2(Ω) barycenter of a set of
functions (ρ1, · · · , ρn) ∈ L2(Ω)n with barycentric weight Λ. Indeed,

ρL2

Λ :=
n∑

i=1

λiρi ,

is equivalently the unique minimizer of

ρL2

Λ = argmin
ρ∈L2(Ω)

n∑
i=1

λi‖ρ− ρi‖2
L2(Ω).
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Wasserstein barycenters
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Wasserstein metric: optimal transport

Let ρ1, ρ2 ∈ P2(Ω). Then,

W2(ρ1, ρ2)2 := inf
π ∈ P(Ω× Ω)∫

y∈Ω
π(x , y) dy = ρ1(x)∫

x∈Ω
π(x , y) dx = ρ2(y)

∫
Ω×Ω

|x − y |2 π(x , y) dx dy .

where P (Ω× Ω) is the set of probability measures on Ω× Ω.

Kantorovich formulation of optimal transport problem
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Numerical methods to compute Wasserstein barycenters

• Simple explicit formulas for one-dimensional densities
• Several numerical methods exist for solving such problems and

computing Wasserstein barycenters in higher-dimensional settings:
linear programming, auction algorithm, entropic regularization (Sinkhorn
algorithm)...
Nevertheless, all these methods remain quite expensive from a
computational point of view.
• There are some families of densities for which analytical formulas are

explicitly known.
Example: Gaussian densities [Iollo, Taddei, 2022]

ρ1 ∼ N (m1,Σ1) ρ2 ∼ N (m2,Σ2)

W 2
2 (ρ1, ρ2) = ‖m1 −m2‖2 + Tr

(
Σ1 + Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
)

ρ
W2
t ∼ N (mt ,Σt ) with explicit formulas for mt and Σt .
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Gaussian mixtures
In [Delon, Desolgneux, 2020]: mathematical analysis of a modified Wasserstein
metric defined on the space of Gaussian mixtures, i.e. probability densities
that are convex combinations of Gaussians.

ρ =
K∑

k=1

πkρk , πk ≥ 0 with
K∑

k=1

πk = 1 and ρk ∼ N (mk ,Σk )

Let ρ1 =

K1∑
k1=1

π1
k1ρ

1
k1 and ρ2 =

K2∑
k2=1

π2
k2ρ

2
k2 be two such mixtures

MW 2
2 (ρ1, ρ2) := min

(wk1k2
)

∑
k1,k2

wk1k2 W 2
2 (ρ1

k1 , ρ
2
k2 ), (2)

over the set of wk1k2 ≥ 0 such that∑
k1

wk1k2 = π2
k2

∑
k2

wk1k2 = π1
k1

It holds that
MW 2

2 (ρ1, ρ2) ≥ W 2
2 (ρ1, ρ2)
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Modified Wasserstein barycenter

Denoting by (w∗k1k2
) a minimizer of problem (2), t ∈ [0, 1],

ρ
MW2
t =

∑
k1k2

w∗k1k2ρ
W2
t,k1k2

,

where ρW2
t,k1k2

is the Wasserstein barycnetr with weight t between ρ1
k1

and ρ2
k2

.

Similar formulas for barycenters of more than two gaussian mixtures.
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Advantages of the modified Wasserstein metric

• Very quick to compute in any dimension using analytic formulas for
Gaussians: resolution of a small linear programming problem (provided
that the number of gaussians in the mixture remains reasonably small).
• Better interpolation properties that the original Wasserstein metric: in

particular, the MW2 barycenter of mixtures of gaussians is still a
mixture of gaussians (this is not the case for the W2 barycenter)
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Extension to other types of mixtures
In [Dusson, VE, Nouaime, 2023], we extend the notion of this modified Wasserstein
metric to other types of mixtures with a view to use it in order to interpolate
electronic densities in quantum chemistry applications.

In general, let A ⊂ P2(Ω) be a subset of probability measures, called the
atomic set. We consider mixtures of elements of A defined as convex
combination of elements of A,

ρ =
K∑

k=1

πk ak , ak ∈ A, πk ≥ 0,
K∑

k=1

πk = 1.

Let ρ1 =

K1∑
k1=1

π1
k1 a1

k1 and ρ2 =

K2∑
k2=1

π2
k2 a2

k2 be two such mixtures

MW 2
2 (ρ1, ρ2) := min

(wk1k2
)

∑
k1,k2

wk1k2 W 2
2 (a1

k1 , a
2
k2 ), (3)

over the set of wk1k2 ≥ 0 such that∑
k1

wk1k2 = π2
k2

∑
k2

wk1k2 = π1
k1

Similar formulas as in the Gaussian case for modified Wasserstein
barycenters.
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Location-scatter measure case

Example of interesting atomic set: location-scatter measures
Let a ∈ P2(Ω). The set of location-scatter atoms generated from a is

A :=
{

T #a,T : x ∈ Rd 7→ Ax + b, b ∈ Rd ,A ∈ Sd

}
where Sd is the set of symmetric positive definite matrices of Rd×d .

Why interesting? Because there are analytic formulas for the Wasserstein
distance and barycenter between two elements of A!
The computation of modified Wasserstein metric and barycenter between
mixture of location-scatter atoms is then very easy provided that the number
of terms in the mixture remains not too large.
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Examples

Slater distribution: a(x) = e−|x|
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Examples
Gamma distribution: x ≥ 0, aα,β(x) = βα

Γ(α)
xα−1e−βx

Wigner distribution: a(x) =
√

1− |x |2
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Mixture of squared Slater determinants

In quantum chemistry computation, an interesting set of atoms for two-body
electronic densities is the set of squared Slater determinants of Gaussian or
Slater functions: x , y ∈ Rd

a(x , y) =
1
Z

(gm1,Σ1 (x)gm2,Σ2 (y)− gm1,Σ1 (y)gm2,Σ2 (x))2

in order to interpolate between two-body densities
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Conclusion and perspectives
Summary:
• The modified Wasserstein metric introduced by Delon and Desolneux for

Gaussian mixtures has nice properties: easy to compute in arbitrary
dimension provided that the number of terms in the mixture remains not
too large, better interpolation properties than the exact Wasserstein
metric
• With G. Dusson and N. Nouaime, we extend the notion of this modified

Wasserstein metric to other types of mixtures, with a view to use it to
build reduced-order model for electronic structure calculations in
quantum chemistry

On-going work and perspectives:
• Implementation of this interpolation scheme to accelerate electronic

structure calculations on real molecules (on-going work with Etienne
Polak and Geneviève Dusson)
• Theoretical estimates of the error made by this type of modified

Wasserstein interpolations (in simple cases) (joint work with Maxime
Dalery, Geneviève Dusson and Alexeı̈ Lozinski)
• useful for other types of applications where optimal transport can help?

Thank you for your attention!
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