Challenges of Residual Minimization-based Model Order Reduction in Car Aerodynamics

M. Mrosek, A. Scardigli, C. Othmer, H. Telib, T. Taddei, A. Iollo

Agenda

- 1. Introduction
- 2. Steady-State Least Squares Petrov Galerkin Reduced Order Model
- 3. Applications
 - Backward Facing Step
 - Ahmed Body
- 4. Summary

Introduction

Interactive Aerodynamic Design

Problem: Iterative loop between design and aerodynamic computation: 12h up to several days **Solution:** Real-time aerodynamic prediction for interactive aerodynamic design

Required: Parametric geometry, Design of Experiments (DoE), Reduced Order Model (ROM)

State of the art: Proper Orthogonal Decomposition + Interpolation (POD+I)

Goal: Residual-Minimization-based ROM for higher accuracy, especially in poorly sampled areas of the design space

VOLKSWAGEN GROUP Steady-State Least Squares Petrov Galerkin Reduced Order Model Overview

x: state vector (snapshot vector)

Objective Function = $||A f(\tilde{x})||_2$

- Discrete **residual scaling** via norm of residuals of initial solution (POD+I) ٠
- **Nonlinear least-squares** solver from Python package scipy ٠

Backward Facing Step - Varying Angle

Full order model (FOM) :

- Re=50
- SIMPLE algorithm from OpenFOAM®
- 2 training snapshots: 20° and 90°

Backward Facing Step - Varying Angle

Challenge #1: The "Shift Problem"

Train snapshots Test snapshots

Step angle: 20° - 90°

With Residual Scaling

W/o Residual Scaling

INTERNAL

7

Backward Facing Step - Varying Angle

W/o Residual Scaling

♦ ×

60

Angle in degrees

•

 \diamond

\$

70

sv

 \diamond

X

50

sv

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

POD coefficient

 \diamond

X

30

700000

600000 500000 400000

300000 2 200000

 \diamond

40

POD+I <u>+--</u>

--- Projected

--- ResMin

3.0

2.5

Rel. L²-error [%]

1.0

0.5

Rel. L²-error [%]

Backward Facing Step - Varying Re

Full order model (FOM) :

- SIMPLE algorithm from OpenFOAM®
- Re = 50 450

Backward Facing Step - Varying Re

All Residuals

Train snapshots Test snapshots

Re: 50 - 450

Error Pressure

INTERNAL

Backward Facing Step - Varying Re

Mask for High Residuals near Boundary

Train snapshots Test snapshots

Re: 50 - 450

• Residuals of initial solution for test snap @ Re=100

• Magnitude(res:U) >= 20 used as a criterion to find 16 cells

8

400

Backward Facing Step - Varying Re

Only Boundary Residuals

"Shift" problem mitigated by

- **Residual scaling** 1.
- Masking of residuals 2.

Train snapshots **Test snapshots**

Re: 50 - 450

Error Pressure

Ahmed Body

Training Data

Full order model (FOM):

- 50 RANS simulations, evenly spaced for slant angles from 15° to 35°
- SIMPLE algorithm from OpenFOAM ®

Ahmed Body

Challenge #2: Poor FOM Convergence

- To exclude high residuals in underbody region, ROM is restricted to subvolume shown right
- Obj-Fn Evaluation, Error Evaluation: HotCells
- **POD**: HotCells + HaloCells

Ahmed First Flow Region

Ahmed First Flow Region

Residual Scaling Factor from Projected Solution

Ahmed First and Second Flow Region

Challenge #3: Prediction of Time-averaged Quantities of Unsteady Simulations

Full order model in car aerodynamics is unsteady:

- DDES or Lattice-Boltzmann, typically 4 sec of physical time, 100-200 million cells
- Quantities of interests are time-averaged (last 1.5 sec): fields and coefficients
- Residual Equations?

Challenge #4: Hyper-Reduction

Choice of the submesh:

- Several approaches in literature
- Avoid regions of high FOM residuals?
- Problems for industrial geometries and flows to be expected

As noted before: hyper-reduction not only to accelerate the online computation, but likely essential for accuracy

Summary

Challenges of ROMs in Car Aerodynamics:

- 1. "Shift problem": Minima of objective function and state error do not coincide
- 2. Poor FOM convergence
- 3. Prediction of time-averaged quantities of unsteady simulations
- 4. Hyperreduction

Backup

INTERNAL

Steady-State Least Squares Petrov Galerkin Reduced Order Model Overview

$f(\tilde{x})$: residual vector

 $\begin{array}{l} & \text{Ux,res} (U(\tilde{x}), p(\tilde{x}), phi(\tilde{x})) \\ \hline \| \text{Ux,res} (U(\tilde{x}^{0}), p(\tilde{x}^{0}), phi(\tilde{x}^{0}) \|_{2} \\ & \text{Uy,res} (U(\tilde{x}^{0}), p(\tilde{x}), phi(\tilde{x})) \\ \hline \| \text{Uy,res} (U(\tilde{x}^{0}), p(\tilde{x}^{0}), phi(\tilde{x})) \|_{2} \\ & \text{Uz,res} (U(\tilde{x}), p(\tilde{x}), phi(\tilde{x})) \\ \hline \| \text{Uz,res} (U(\tilde{x}^{0}), p(\tilde{x}^{0}), phi(\tilde{x})) \|_{2} \\ & \text{p,res} (U(\tilde{x}), p(\tilde{x}), phi(\tilde{x})) \\ \hline \| p, res (U(\tilde{x}^{0}), p(\tilde{x}^{0}), phi(\tilde{x})) \|_{2} \\ & \text{phi,res} (U(\tilde{x}), p(\tilde{x}), phi(\tilde{x})) \\ \hline \| phi, res (U(\tilde{x}^{0}), p(\tilde{x}^{0}), phi(\tilde{x})) \|_{2} \end{array}$

Objective Function = $||A f(\tilde{x})||_2$

- Discrete residual scaling via norm of residuals of initial solution (POD+I)
- Nonlinear least-squares solver from Python package scipy

VOLKSWAGEN

Steady-State Least Squares Petrov Galerkin Reduced Order Model Overview

$f(\tilde{x})$: residual vector

Objective Function = $||A f(\tilde{x})||_2$

- Discrete residual scaling via norm of residuals of initial solution (POD+I)
- Nonlinear least-squares solver from Python package scipy

VOLKSWAGEN

Steady-State Least Squares Petrov Galerkin Reduced Order Model

Dimensionally-Consistent Inner Products for ROM-Projection and POD

ROM-Projection

Dimensionally-consistent inner product via discrete residual scaling

$f(\tilde{x})$: residual vector

 $\begin{array}{c} & \text{Ux,res} (U(\tilde{x}), p(\tilde{x}), phi(\tilde{x})) \\ \hline \| \text{Ux,res} (U(\tilde{x}^{0}), p(\tilde{x}^{0}), phi(\tilde{x}^{0}) \|_{2} \\ & \text{Uy,res} (U(\tilde{x}), p(\tilde{x}), phi(\tilde{x})) \\ \hline \| \text{Uy,res} (U(\tilde{x}^{0}), p(\tilde{x}^{0}), phi(\tilde{x}^{0}) \|_{2} \\ & \text{Uz,res} (U(\tilde{x}), p(\tilde{x}), phi(\tilde{x})) \\ \hline \| \text{Uz,res} (U(\tilde{x}), p(\tilde{x}), phi(\tilde{x})) \\ \hline \| \text{Uz,res} (U(\tilde{x}^{0}), p(\tilde{x}^{0}), phi(\tilde{x}^{0}) \|_{2} \\ & \text{p,res} (U(\tilde{x}), p(\tilde{x}), phi(\tilde{x})) \\ \hline \| \text{p,res} (U(\tilde{x}^{0}), p(\tilde{x}^{0}), phi(\tilde{x})) \\ \hline \| \text{ph,res} (U(\tilde{x}), p(\tilde{x}), phi(\tilde{x})) \\ \hline \| \text{phi,res} (U(\tilde{x}^{0}), p(\tilde{x}^{0}), phi(\tilde{x}^{0}) \|_{2} \end{array}$

ResMin Objective Function = $||A f(\tilde{x})||_2$

POD

• Dimensionally-consistent inner product via **non-dimensionalizing state vectors before POD**

VOLKSWAGEN

x: state vector (snapshot vector)

Backward Facing Step - Varying Re

Test Case Description

Re: 50 - 450

$$Re = \frac{U * L}{v}$$
, with L=0.0254m and U=1 m/s

Re	Kinematic viscosity v [m^2/s]
50	5.080E-04
200	1.270E-04
300	8.467E-05
450	5.644E-05

Velocity Profile at Inlet

name	parabolicFixedValue;
code	#{
Foam::ve	ctorField values=this->patch().Cf();
Foam::sc	alarField vcoords=this->patch().Cf().component(vector::Y);
forAll(v	values, id)
{	
valu valu valu	es[id].component(vector::Y)= 0; es[id].component(vector::X)=-6/(0.0254*0.0254)*pow(ycoords[id],2)+6/0.0254*ycoords[id]; es[id].component(vector::Z)= 0;
}	
operator	==(values);
#};	

Ahmed First Flow Region

Train snapshots Test snapshots

Slant angle: 15° - 22.8°

Backward Facing Step - Varying Re

More Training Snaps

Train snapshots: 50, 60, 70, ..., 450 (excluding test snaps, 36 in total) Test snapshots: 100, 150, 250, 350, 400 (same as before)

Ahmed Second Flow Region Start from POD+I

Slant angle: 24.4° - 28.1°

23.05.2024 INTERNAL

Ahmed Second Flow Region

Start from Projected Solution

23.05.2024 INTERNAL

VOLKSWAGEN GROUP

Slant angle: 24.4° - 28.1°

Sanity Checks: Predict Training Snapshots

Backward Facing Step - Varying Re

FOM Velocity

Backward Facing Step - Varying Re

FOM Velocity

Train snapshots **Test snapshots**

Backward Facing Step - Varying Re

ROM with Varying Initial Coefficients

- $x^0 = c x^{proj}$, c is varied in plots
- Discrete scaling factors computed with residuals corresponding to c=0

Backward Facing Step - Varying Re

ROM with Varying Initial Coefficients

Train snapshots Test snapshots

Re: 50 - 450

Objective-function

POD coefficient 1

Backward Facing Step - Varying Re

ROM with Varying Initial Coefficients

POD coefficient 2

Backward Facing Step - Varying Re

ResMin @ Re450

Re: 50 - 450

FOM Re = 300

Backward Facing Step - Varying Re

ResMin @ Re450

Train snapshots Test snapshots

Re: 50 - 450

FOM Re = 300

Backward Facing Step - Varying Re

POD Modes Velocity

5.14e-11

Re: 50 - 450

Singular Values

Train snapshots

Test snapshots

- Mode 1: 1.14 •
- Mode 2: 0.40
- Mode 3: 0.17 .
- Same for pressure (Global POD) •

Backward Facing Step - Varying Re

ResMin @ Re450 - Residuals

Train snapshots Test snapshots

Backward Facing Step - Varying Re

ResMin @ Re450 - Error w.r.t. FOM

Backward Facing Step - Varying Re

Projected @ Re450 - Residuals

Backward Facing Step - Varying Re

Objective-function on path between Resmin and Projected Solution

• $x^0 = d(x^{proj} - x^{resmin}) + x^{resmin}$

 \rightarrow Resmin solution is a local minimum!!

Backward Facing Step - Varying Re

Mask for High Residuals near Boundary

 ResMin @ Re450: magnitude(res:U) >= 2 used as a criterion to find 9 cells close to boundary

Backward Facing Step - Varying Re

Mask for High Residuals near Boundary

Re: 50 - 450

Only residuals in bulk region

Backward Facing Step - Varying Re

Mask for High Residuals near Boundary

Re: 50 - 450

Only residuals in boundary region

Backward Facing Step - Varying Re

Mask for High Residuals near Boundary

• $x = d(x^{proj} - x^{resmin}) + x^{resmin}$

Only residuals in boundary region

Only residuals in bulk region

 \rightarrow local minimum vanished!

Predict Test Snapshots

INTERNAL

Backward Facing Step - Varying Re

Mask for High Residuals near Boundary

Mask for POD+I solution @ Re=100 (test snapshot)

- Magnitude(res:U) >= 20 used as a criterion to find 16 cells
- Mask used for all test snapshots for now for simplicity (very similar for all test snapshots)

Backward Facing Step - Varying Re

Without Mask (Bulk + Boundary Residuals)

Train snapshots **Test snapshots**

Error Pressure

Backward Facing Step - Varying Re

Only Bulk Residuals

Train snapshots Test snapshots

Error Pressure

Re: 50 - 450

Error Velocity (Ux and Uy)

Backward Facing Step - Varying Re

Only Boundary Residuals

Train snapshots **Test snapshots**

Error Pressure

Backward Facing Step - Varying Re

Only Boundary Residuals - Re=100

Train snapshots Test snapshots

Backward Facing Step - Varying Re

Only Boundary Residuals - Re=100

Train snapshots Test snapshots

Backward Facing Step - Varying Re

Error Velocity (Ux and Uy)

Weighing of Boundary and Bulk Residuals

 $\mathbf{f}(\widetilde{\mathbf{x}}) = w \, \mathbf{f}(\widetilde{\mathbf{x}})_{boundary} + (1 - w) \, \mathbf{f}(\widetilde{\mathbf{x}})_{bulk}$

Re: 50 - 450

Error Pressure

Backward Facing Step - Varying Re

Weighing of Boundary and Bulk Residuals - w=0.99

Train snapshots Test snapshots

63

Backward Facing Step - Varying Re w=0.99, Re=100

Re: 50 - 450

Resmin

INTERNAL

Backward Facing Step - Varying Re w=0.99, Re=100

Train snapshots Test snapshots

