

Liberté Égalité Fraternité

THE FRENCH AEROSPACE LAB

ONERA

A collocated MOR for advectivedominant PDEs: hyper-reduction of ADER scheme on evolving chimera meshes

Michel Bergmann¹, Michele Giuliano Carlino^{2,1} & Angelo Iollo¹

¹INRIA Bordeaux (MEMPHIS); ²ONERA Meudon (MAPE)

{michel.bergmann; angelo.iollo}@inria.fr, michele.carlino@onera.fr

ARIA Online seminar - May 23, 2024

- Chimera mesh and cell classification
- The high-fidelity method
- The hyper-reduced approach
- Beyond the Kolmogorov *n*-width
- Numerical results
- Conclusions and Future Perspectives

The Overset Grid or Chimera Mesh

The Overset Grid or Chimera Mesh

Pro: high fidelity solution wrt the real geometry of the physical phenomenon

Cons: i) Communcation among different meshes; ii) Mesh movement and deformation

A Cell Classification

 $\mathcal{T}_{bg}(t) = \mathcal{T}_{bg}^{hole}(t) \cup \mathcal{T}_{bg}^{ol}(t) \cup \mathcal{T}_{bg}^{nol}(t)$

Another cell classification

$$\int_{t} \mathcal{T}_{bg}(t) = \bigcup_{t} \mathcal{T}_{bg}(t) \cup \bigcup_{t} \mathcal{T}_{bg}(t) = \mathcal{T}_{bg}^{HF} \cup \mathcal{T}_{bg}^{ROM}$$
$$\mathcal{T}_{bg}^{hole}(t) \subset \mathcal{T}_{bg}^{HF} \quad \forall t$$
Static partitions: \mathcal{T}_{bg}^{ROM} and \mathcal{T}_{fg} .
Dynamic partition: \mathcal{T}_{bg}^{HF} .

The high-fidelity method

Find $\boldsymbol{u}: \Omega(t) \times (0,T] \to \mathbb{R}^{\delta}$ such that

 $\boldsymbol{F}(\boldsymbol{u},\nabla\boldsymbol{u}) = \boldsymbol{\beta}(\boldsymbol{u}) - \boldsymbol{\nu}(\boldsymbol{u})\nabla\boldsymbol{u}$

 $\partial_t \boldsymbol{u} + \nabla \cdot \boldsymbol{F}(\boldsymbol{u}, \nabla \boldsymbol{u}) = \boldsymbol{f}$

Properly closed by boundary conditions an initial conditions.

Motion equation for
$$X_{fg} \in \Omega_{fg}$$
:

$$\begin{cases}
\dot{X} = V(x, t; u) \\
X(0) = X_0
\end{cases}$$

Arbitrary high-order DERivatives: ADER (FV version)

Prediction

- From solution at $t = t^n$: (spatial) local \mathcal{P}_2^{loc} -interpolation over any cell $\Omega_i^n = \Omega_i(t^n)$.
- Local-space time solution over any $C_i^n = \Omega_i(t) \times (t^n, t^{n+1})$.

Correction

- FV scheme by integrating the PDE over C_i^n .
- Flux discretization by employing the local space-time predictor

Overset mesh

Cell management of the overlapping zone

¹Dumbser *et al.*, SIAM J. Sci. Comp. (2017); Titaterev & Toro, J. Comp. Phys. (2005); Bergmann *et al.*, SIAM J. Sci. Comp. (2021); Bergmann *et al.*, J. Sci. Comp. (2022).

ADER: Prediction

 $\mathcal{M}_i: \begin{cases} x = x(\xi, \eta, \tau) \\ y = y(\xi, \eta, \tau) \\ t = t^n + \Delta t \tau \end{cases}$ Space-time cell: $C_i^n = \Omega_i(t) \times (t^n, t^{n+1}).$ From the mesh motion equation: \mathcal{M}_i $\underset{\nearrow}{\uparrow} \eta_{\xi} \hat{\mathcal{C}}$ Find the local space-time solution $\boldsymbol{q}: \mathcal{C}_i^n \to \mathbb{R}^{\delta}$ s. t. $\begin{cases} \partial_t \boldsymbol{q} + \nabla \cdot \boldsymbol{F}(\boldsymbol{q}, \nabla \boldsymbol{q}) = \boldsymbol{f}; in \ \mathcal{C}_i^n \\ \boldsymbol{q}|_{t=t^n} = \mathcal{P}_2^{loc} \boldsymbol{u}^n; \qquad on \ \Omega_i^n \end{cases}$ The equation is solved via FE.

Definition: $\nabla_{\boldsymbol{x},t} \coloneqq [\partial_t, \nabla]^T$; $\boldsymbol{\mathcal{U}} \coloneqq [\boldsymbol{u}, \boldsymbol{F}(\boldsymbol{u}, \nabla \boldsymbol{u})]^T$

ADER: Correction

¹Bergmann et al., SIAM J. Sci. Comp. (2021).

Stabilization of the scheme

Let
$$\widetilde{\boldsymbol{n}} = \boldsymbol{n} / \sqrt{n_x^2 + n_y^2}$$
.

$$s_{AD} = \max |\rho(\mathcal{A})| = \frac{1}{2} \left| \tilde{\sigma} + \sqrt{\left(a_x^2 + \frac{4\nu}{\varepsilon}\right)} \tilde{n}_x^2 + 2a_x a_y \tilde{n}_x \tilde{n}_y + \left(a_y^2 + \frac{4\nu}{\varepsilon}\right) \tilde{n}_x^2 \right|$$

Optimal relaxation parameter ε

Corollary: Optimal relaxation time¹

For a given mesh size h and a numerical scheme of order p for $u_{hyp,h}$ solving the hyperbolized problem derived by the original parabolic problem, the optimal relaxation time ε_p is

$$\varepsilon_p = \mathcal{O}(1) \frac{h^p}{C_p}$$

Chosen relaxation time: $\varepsilon = \varepsilon_2/2$.

¹Toro & Montecinos, SIAM J. Sci. Comp. (2014); Carlino, PhD Thesis (2021); Bergmann et al., SIAM J. Sci. Comp. (2021)

The advective-dominant limit

For a hyperbolic equation ($\nu = 0$), the stabilization coefficient is the maximum eigenvalue of the ALE Jacobian matrix

$$A_{\widetilde{\boldsymbol{n}}}^{\boldsymbol{V}} = \sqrt{n_x^2 + n_y^2} \left(\frac{\partial \boldsymbol{F}}{\partial u} \ \widetilde{\boldsymbol{n}_x} \ - \boldsymbol{V} \cdot \widetilde{\boldsymbol{n}} \boldsymbol{I} \right)$$

Namely:

$$s_A = \max \left| \rho \left(A_{\widetilde{n}}^V \right) \right| = \left| \boldsymbol{a} \cdot \widetilde{\boldsymbol{n}_x} + \widetilde{\boldsymbol{n}_t} \right|$$

Proposition: Limit of vanishing diffusion¹ $\lim_{\nu \to 0} s_{AD} = \frac{1}{2} |\tilde{\sigma} + \boldsymbol{a} \cdot \widetilde{\boldsymbol{n}_{x}} + n_{t}| = s_{A}$

¹Carlino, PhD Thesis (2021); Bergmann *et al.*, SIAM J. Sci. Comp. (2021)

The hyper-reduced approach

Find $\boldsymbol{u}: \Omega(t) \times (0,T] \times \mathcal{P} \to \mathbb{R}^{\delta}$, with $\mathcal{P} \subset \mathbb{R}^{p}$, such that

$$\partial_t \boldsymbol{u}(z) + \nabla \cdot \boldsymbol{F}(\boldsymbol{u}(z), \nabla \boldsymbol{u}(z)) = \boldsymbol{f}$$

With $\boldsymbol{z} \in \mathcal{P}$ parameter vector.

Motion equation for
$$X_{fg} \in \Omega_{fg}$$
:

$$\begin{cases} \dot{X} = V(x, t; u; z) \\ X(0) = X_0 \end{cases}$$

The reduced basis span $\{\phi_i\}_{i=1}^{N_{\text{ROM}}}$

 $\Phi \in \mathbb{R}^{N \times N_{\text{ROM}}}$ $W \in \mathbb{R}^{N \times N}$ $\widehat{\boldsymbol{u}}_{\text{HF}} \in \mathbb{R}^{N}$

It holds

$$u_{\text{ROM}}(\boldsymbol{x}, t; \boldsymbol{z}) = \sum_{i=1}^{N} a_i(t; \boldsymbol{z}) \,\phi_i(\boldsymbol{x}) \Rightarrow \hat{\boldsymbol{u}}_{\text{ROM}} = \Phi \boldsymbol{a}$$

and

Thus:

$$a_i(t; \mathbf{z}) = \int_{\Omega(t; \mathbf{z})} u_{\mathrm{HF}}(\mathbf{x}, t; \mathbf{z}) \phi_i(\mathbf{x}) \, \mathrm{d}\mathbf{x} \Rightarrow \mathbf{a} = \Phi^{\mathsf{T}} W \widehat{\mathbf{u}}_{\mathrm{HF}}.$$

$$\widehat{\boldsymbol{u}}_{\text{ROM}} = \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{W} \widehat{\boldsymbol{u}}_{\text{HF}}$$

W is the matrix collecting the Gauss quadrature weigths.

The collocated reduced approach

The quadrature weights matrix W can be replaced by an empirical quadrature weights matrix \tilde{W} . This new matrix is found by NNLS wrt the integral

$$\int_{\Omega(t;z)} u_{\text{HR}}(x,t;z) \phi_i(x) \, \mathrm{d}x$$

for any $i = 1, ..., N$, $z \in Z$ and $(x,t) \in \Omega(t;z) \times [0,T]$.
Thus the projection reads

 $\widehat{\boldsymbol{u}}_{\mathrm{HR}} = \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathsf{T}} \widetilde{\boldsymbol{W}} \widehat{\boldsymbol{u}}_{\mathrm{HF}}$

 $\Phi \in \mathbb{R}^{N_{\mathrm{HR}} \times N_{\mathrm{ROM}}}$ $\widetilde{W} \in \mathbb{R}^{N_{\mathrm{HR}} \times N_{\mathrm{HR}}}$ $\widehat{u}_{\mathrm{HF}} \in \mathbb{R}^{N_{\mathrm{HR}}}$

The issue of the background mesh

A domain decomposition approach. Two reduced basis:

$$\operatorname{span} \left\{ \phi_{i}^{\operatorname{bg}} \right\}_{i=1}^{N_{\operatorname{ROM}}^{\operatorname{bg}}} \operatorname{on} \mathcal{T}_{\operatorname{bg}}^{\operatorname{ROM}} = \bigcup_{t,z} \mathcal{T}_{\operatorname{bg}}^{\operatorname{nol}}$$
$$\operatorname{span} \left\{ \phi_{i}^{\operatorname{fg}} \right\}_{i=1}^{N_{\operatorname{ROM}}^{\operatorname{fg}}} \operatorname{on} \mathcal{T}_{\operatorname{fg}}$$

The issue of the background mesh

On $\mathcal{T}_{bg}^{HF} = \bigcup_{t,z} \mathcal{T}_{bg}^{ol}$ the recovered solution is HF.

Beyond the Kolmogorov *n*-width

Let $\varphi: \mathcal{P} \to \Omega$ be the mapping associating any $z \in \mathcal{P}$ to a parametric solution $u = \varphi(z) \in \Omega$ under the constraint given by the PDE:

$$\mathcal{R}(u(\mathbf{z}),\mathbf{z}) = 0 \quad \forall \mathbf{z} \in \mathcal{P}$$

The residual implicitly define a manifold in the Hilbert space $(V, \|\cdot\|)$. Thus $\operatorname{im} \varphi \subseteq V$.

Let V_n be a *n*-dimensional ($n < +\infty$) subspace of *V*. It holds

$$d_{V_n} = \inf_{v \in \operatorname{im}\varphi} \sup_{v_n \in V_n} \|v - v_n\| \ge d_n(\operatorname{im}\varphi) = \sup_{\substack{W_n \subset V \\ n = \dim W_n < +\infty}} \inf_{w \in \operatorname{im}\varphi} \sup_{\substack{w_n \in W_n \\ w_n \in W_n}} \|w - w_n\|$$

With W_n a generic *n*-dimensional subspace of *V*.

An example: the advection of a compact support function

Proposition Fourier \cong SVD at fixed time There not exists a linear combination t = 0 representing the evolution of the solution 0.8 from t^1 to t^2 . 0.6 0.4 0.8 0.2 Corollary An infinite number of modes are needed -1.5 -1 -0.5 0 -2 -2.5

for represeing the evolution in $[t^1, t^2]$.

-1.5

-0.5

0.5

 $f(t = 0.5) \neq a_0 f(t = 0) + a_1 (t = 1)$

1.5 2 25

 \geq

t = 0t = 1

-t = 0.5

Reference Mapping vs Relativity of the frame

Fraternit

Numerical results

Performance analysis: Hyper-Reduced (HR) vs High-Fidelity (HF).

$$\operatorname{Err} = \frac{\sqrt{\int_0^T \int_\Omega (u_{\mathrm{HR}} - u_{\mathrm{HF}})^2 \, d\mathbf{x} \, \mathrm{d}t}}{\sqrt{\int_0^T \int_\Omega u_{\mathrm{HF}}^2 \, d\mathbf{x} \, \mathrm{d}t}} \qquad \begin{array}{c} u_{\mathrm{HR}} \propto \varepsilon_{\mathrm{NNLS}} \\ \varepsilon_{\mathrm{NNLS}} = 0 \Rightarrow u_{\mathrm{HR}} = u_{\mathrm{ROM}} \end{array}$$

Hyper-reduction analysis:

Total number of cells: N Number of cells in T_{fg} : N_{fg} Number of cells in T_{bg}^{HF} : N_{bg}^{HF}

Number of cells in \mathcal{T}_{bg}^{ROM} : N_{bg}^{ROM} Number of cells in \mathcal{T}_{bg} : $N_{bg} = N_{bg}^{HF} + N_{bg}^{ROM}$ Number of HR cells in \mathcal{T}_{bg}^{ROM} : N_{bg}^{HR} Number of HR cells in \mathcal{T}_{fg} : N_{fg}^{HR} Titre de la présentation 23

The best approximation: full projection on ROM basis

Let
$$V_n = \operatorname{span} \left\{ \phi_i^{\mathrm{bg}} \right\}_{i=1}^n \cup \operatorname{span} \left\{ \phi_i^{\mathrm{fg}} \right\}_{i=1}^n \cup \tilde{V}_n \Big|_{\mathcal{T}_{\mathrm{bg}}^{\mathrm{HF}}}$$
 be the employed ROM subspace.

$$\operatorname{Err}\Big|_{\varepsilon_{\operatorname{NLLS}}\neq 0} \ge \operatorname{Err}\Big|_{\varepsilon_{\operatorname{NNLS}}=0} \Rightarrow d_{V_n}\Big|_{\varepsilon_{\operatorname{NNLS}}\neq 0} \ge d_{V_n}\Big|_{\varepsilon_{\operatorname{NNLS}}=0}$$

Since
$$\phi_i^*$$
 $(i = 1, ..., n, *= \text{bg, fg})$ is defined all over \mathcal{T}_* , we expect
 $\operatorname{Err}\Big|_{\varepsilon_{\text{NLLS}}^1} \leq \operatorname{Err}\Big|_{\varepsilon_{NNLS}^2}$
For $\varepsilon_{\text{NNLS}}^1 \leq \varepsilon_{\text{NNLS}}^2$.

Linear test case: v = 0.05, $\beta = [1,1]^{\top}$, $z \in [-2,2]$ $u(x,t;z) = \exp[-x^2 - (y+zt)^2 + 0.5^2] + \cos(x - 0.5t)\sin(y - 0.5t)$

Linear test case

In-sample simulation (z = +1)

3.5

2 2.5

1.5

In-sample simulation

Out-of-sample simulation (z = +1.7**)**

Nonlinear case: $\nu = 0.05$, $\beta = \tanh(u) [0,1]^{\top}$, $z \in [0.1,2]$, $f = \sin(x) \sin(y)$

E E RÉPUBLIQUE

Liberté Égalité Fraternit

FRANCAISE

e la présentation 30

Nonlinear test case

RÉPUBLIQUE FRANÇAISE

Liberté Égalité Fraternité Mode 2

n **31**

In-sample simulation (z = +1)

$$N = 7387; N_{bg} = 6561; N_{fg} = 826;$$

 $N_{fg}^{HF} = 491 (7.5\%)$

In-sample simulation

Out-of-sample simulation (z = +1.7**)**

Pure advective problem for a compact support function

$$u(\mathbf{x},t;z) = \exp \frac{-1}{1 - |\mathbf{x} - \mathbf{z}t|^2} \chi_{\{|\mathbf{x} - \mathbf{z}t| \le 1\}}(\mathbf{x})$$

Pure advective problem (one-block approach)

.

Liberté Égalité Fraternité

36

Pure advective problem (Chimera approach)

Mode 1

h

Comparison of decays of SVs

In-sample and out-of sample simulations

Error Chimera: $\mathcal{O}(10^{-6})$ with 1 mode. Error one-block: $\mathcal{O}(1)$ with 25 modes.

- Hyper-reduced ADER-FV
- Collocated method
- Hyper-reduction as mesh-reduction AND extension tool
- Tool able to overcome the Kolmogorov *n*-width.

Future prespectives

- Extension to (in)compressible NS
- Extension to more classical FV approaches
- Extension to (pure) hyperbolic PDEs (need of good transmission of shocks and discontinuities along interface)

Liberté Égalité Fraternité ONERA THE FRENCH AEROSPACE LAB

Département Aérodynamique Aéroélasticité Acoustique

michele.carlino@onera.fr
michele-giuliano.carlino@inria.fr