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Abstract: The development of efficient reduced order models (ROMs) from a deep learning 
perspective enables users to overcome the limitations of traditional approaches [1, 2].  
One drawback of the techniques based on convolutional autoencoders is the lack of geometrical 
information when dealing with complex domains defined on unstructured meshes. 
The present work proposes a framework for nonlinear model order reduction based on Graph 
Convolutional Autoencoders (GCA) to exploit emergent patterns in different physical 
problems, including those showing bifurcating behavior, high-dimensional parameter space, 
slow Kolmogorov-decay, and varying domains [3].  
Our methodology extracts the latent space’s evolution while introducing geometric priors, 
possibly alleviating the learning process through up- and down-sampling operations.  
Among the advantages, we highlight the high generalizability in the low-data regime and the 
great speedup. 
Moreover, we will present a novel graph feedforward network (GFN), extending the GCA 
approach to exploit multifidelity data, leveraging graph-adaptive weights, enabling large 
savings, and providing computable error bounds for the predictions [4]. 
This way, we overcome the limitations of the up- and down-sampling procedures by building a 
resolution-invariant GFN-ROM strategy capable of training and testing on different mesh sizes, 
resulting in a more lightweight and flexible architecture. 
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