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Find  so that 

is the closest to the 

: minimize the
Kullback-Leibler (KL)
divergence.

Unsupervised learning

Unknow true data distribution , but we have access to a dataset

of i.i.d samples . Replace the intractable
expectation by a Monte Carlo estimate:

θ p(x; θ)

p (x)⋆

 D  (p (x) ∥
θ

min KL
⋆ p(x; θ))

=  E  [ln p (x) −
θ

min p (x)⋆
⋆ ln p(x

=  E  [ln p(x; θ)]
θ

max p (x)⋆

p (x)⋆

D = {x  i ∼i.i.d p (x)}  

⋆
i=1
N
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Latent-variable-based DGMs de�ne the model distribution as a
marginal distribution, by introducing a low-dimensional latent random
vector:

GANs and VAEs are two examples of latent-variable-based DGM, but 

 is only de�ned explicitely (i.e. analytically) for VAEs.

p(x; θ) = p(x∣z; θ)p(z)dz.∫

p(x∣z; θ)
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Sequential data

Most of the focus of deep generative modeling has been on static
data (e.g. images).

But many data have an inherent sequential/temporal nature (e.g.
videos, music, speech, text).

We may be interested in learning the temporal dependencies between
the data (observed and latent) at di�erent time frames.

"The horse in motion", pictures made by Eadweard Muybridge in 1887. 3 / 24

https://en.wikipedia.org/wiki/The_Horse_in_Motion


Today's presentation

Objective:

Introduce and discuss a class of models called Dynamical Variational
Autoencoders (DVAEs) that encompass a large subset of temporal
extensions of VAE that have been proposed in the literature.

Outline:

�. Variational autoencoders

�. Dynamical variational autoencoders

This presentation is mostly based on:

L. Girin et al., "Dynamical Variational Autoencoders: A Comprehensive Review", arXiv preprint
arXiv:2008.12595, 2020.

S. L. et al., "A Recurrent Variational Autoencoder for Speech Enhancement", IEEE ICASSP, 2020.
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https://arxiv.org/pdf/2008.12595.pdf
https://arxiv.org/pdf/1910.10942.pdf


Variational autoencoders

Generative model

Inference model and training

Application examples

D.P. Kingma and M. Welling, Auto-Encoding Variational Bayes, ICLR 2014.

D.J. Rezende et. al, Stochastic backpropagation and approximate inference in deep generative models, ICML 2014. 4 / 24

https://arxiv.org/pdf/1312.6114.pdf
https://arxiv.org/pdf/1401.4082.pdf


The prior is a standard Gaussian
distribution:

The likelihood is parametrized with a
generative/decoder neural network, e.g.

where  denotes the parameters of the
decoder network.

Generative model

Let  and  be two random vectors (typically ).
The generative model is de�ned by:

x ∈ RD z ∈ RK K ≪ D

p(x; θ) = p(x∣z; θ)p(z)dz.∫

p(z) = N (z; 0, I).

p(x∣z; θ) = N x;μ  (z), diag v  (z) ,( θ { θ })

θ
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Parameters estimation

Direct maximum marginal likelihood estimation is intractable due
to non-linearities.

For any distribution , we have (Neal and Hinton, 1999; Jordan et

al. 1999)

where  is the evidence lower bound (ELBO), de�ned by

q(z∣x;ϕ)

ln p(x; θ) = L(x;ϕ, θ) + D  (q(z∣x;ϕ) ∥KL p(z∣x; θ)),

L(x;ϕ, θ)

L(x;ϕ, θ) = E  [ln p(x, z; θ) −q(z∣x;ϕ) ln q(z∣x;ϕ)].

R.M. Neal and G.E. Hinton, "A view of the EM algorithm that justi�es incremental, sparse, and other variants", in M. I. Jordan (Ed.), Learning in graphical models,
Cambridge, MA: MIT Press, 1999.

M.I. Jordan et al., "An introduction to variational methods for graphical models", Machine learning, 1999. 6 / 24

http://www.cs.toronto.edu/~radford/ftp/emk.pdf
https://people.eecs.berkeley.edu/~jordan/papers/variational-intro.pdf


Problem #1

where 

Parameters estimation
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to non-linearities.
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M.I. Jordan et al., "An introduction to variational methods for graphical models", Machine learning, 1999.

 L(x;ϕ, θ),
θ

max

L(x;ϕ, θ) ≤ ln p(x; θ)
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Problem #1

where 

Problem #2

Parameters estimation

Direct maximum marginal likelihood estimation is intractable due
to non-linearities.

For any distribution , we have (Neal and Hinton, 1999; Jordan et

al. 1999)

where  is the evidence lower bound (ELBO), de�ned by

q(z∣x;ϕ)

ln p(x; θ) = L(x;ϕ, θ) + D  (q(z∣x;ϕ) ∥KL p(z∣x; θ)),

L(x;ϕ, θ)

L(x;ϕ, θ) = E  [ln p(x, z; θ) −q(z∣x;ϕ) ln q(z∣x;ϕ)].

R.M. Neal and G.E. Hinton, "A view of the EM algorithm that justi�es incremental, sparse, and other variants", in M. I. Jordan (Ed.), Learning in graphical models,
Cambridge, MA: MIT Press, 1999.

M.I. Jordan et al., "An introduction to variational methods for graphical models", Machine learning, 1999.

 L(x;ϕ, θ),
θ

max

L(x;ϕ, θ) ≤ ln p(x; θ)

 L(x;ϕ, θ)
ϕ

max

⇔  D  (q(z∣x;ϕ) ∥
ϕ

min KL p(z∣x; θ))
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http://www.cs.toronto.edu/~radford/ftp/emk.pdf
https://people.eecs.berkeley.edu/~jordan/papers/variational-intro.pdf


To fully de�ne the objective function, we need to specify the

inference model .q(z∣x;ϕ)
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Variational autoencoders

Generative model

Inference model and training

Application examples

D.P. Kingma and M. Welling, Auto-Encoding Variational Bayes, ICLR 2014.

D.J. Rezende et. al, Stochastic backpropagation and approximate inference in deep generative models, ICML 2014. 7 / 24

https://arxiv.org/pdf/1312.6114.pdf
https://arxiv.org/pdf/1401.4082.pdf


Inference model

The inference model (approximate posterior) is typically de�ned by:

where the mean and variance vectors are provided by the encoder
neural network.

q(z∣x;ϕ) = N z;μ  (x), diag v  (x) ,( ϕ { ϕ })
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ELBO

The ELBO is now fully de�ned:

prior: 

likelihood model: 

inference model: 

L(x;ϕ, θ) = E  [ln p(x, z; θ) − ln q(z∣x;ϕ)]q(z∣x;ϕ)

=  −  .

reconstruction accuracy

 E  [ln p(x∣z; θ)]q(z∣x;ϕ)

regularization

 D  (q(z∣x;ϕ) ∥ p(z))KL

p(z) = N (z; 0, I)

p(x∣z; θ) = N x;μ  (z), diag v  (z)( θ { θ })

q(z∣x;ϕ) = N z;μ  (x), diag v  (x)( ϕ { ϕ })
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ELBO

The ELBO is now fully de�ned:

prior: 

likelihood model: 

inference model: 

The reconstruction accuracy term is approximated with a Monte Carlo
estimate:

L(x;ϕ, θ) = E  [ln p(x, z; θ) − ln q(z∣x;ϕ)]q(z∣x;ϕ)

=  −  .

reconstruction accuracy

 E  [ln p(x∣z; θ)]q(z∣x;ϕ)

regularization

 D  (q(z∣x;ϕ) ∥ p(z))KL

p(z) = N (z; 0, I)

p(x∣z; θ) = N x;μ  (z), diag v  (z)( θ { θ })

q(z∣x;ϕ) = N z;μ  (x), diag v  (x)( ϕ { ϕ })

E  [ln p(x∣z; θ)] ≈q(z∣x;ϕ)   ln p(x∣  ; θ),  ∼
R
1

r=1

∑
R

z~r z~r q(z∣x;ϕ).
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ELBO

The ELBO is now fully de�ned:

prior: 

likelihood model: 

inference model: 

The reconstruction accuracy term is approximated with a Monte Carlo
estimate, using the so-called reparametrization trick:

L(x;ϕ, θ) = E  [ln p(x, z; θ) − ln q(z∣x;ϕ)]q(z∣x;ϕ)

=  −  .

reconstruction accuracy

 E  [ln p(x∣z; θ)]q(z∣x;ϕ)

regularization

 D  (q(z∣x;ϕ) ∥ p(z))KL

p(z) = N (z; 0, I)

p(x∣z; θ) = N x;μ  (z), diag v  (z)( θ { θ })

q(z∣x;ϕ) = N z;μ  (x), diag v  (x)( ϕ { ϕ })

E  [ln p(x∣z; θ)] ≈q(z∣x;ϕ)   ln p(x∣  ; θ),  

R
1

r=1

∑
R

z~r {
ϵ  r

 z~r

∼ N (0, I)
= μ (x) + diag v  (ϕ { ϕ
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Remarks

Note that the encoder was only introduced in order to estimate
the parameters of the decoder.

We do not need the encoder for generating new samples.

But it is useful if we need to do inference.
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Variational autoencoders

Generative model

Inference model and training

Application examples
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VAE

Time (s)
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DVAE

Time (s)

Fr
eq

ue
nc

y 
(H

z)

Generation of a speech signal

The lack of temporal modeling is clearly a problem for VAE. In DVAE
we observe: phoneme structure, voiced/unvoiced phonemes,
coarticulation and silences.

Phase estimated with Gri�n-Lim algorithm.
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Dynamical VAEs

Generative model

Inference model and training

Applications
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Modeling sequential data

We are now interested in modeling sequential data:

Observed sequence 

Latent sequence 

Generative modeling consists in de�ning the joint distribution with
temporal dependencies:

rather than the frame-wise joint distribution (as a vanilla VAE does):

.

x  =1:T {x  ∈t R }  

D
t=1
T

z  =1:T {z  ∈t R }  

L
t=1
T

p  (x  , z  ),θ 1:T 1:T

p  (x  , z  ) =θ
VAE

1:T 1:T  p  (x  , z  )
t=1

∏
T

θ t t
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Chain rule

Using the chain rule we can write the joint distribution as a product of
conditionals:

p(x  , z  ) =1:T 1:T p(z  )p(x  ∣z  )  p(z  ∣x  , z  )p(x  ∣x  , z  )1 1 1
t=2

∏
T

t 1:t−1 1:t−1 t 1:t−1 1:t
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Chain rule

Using the chain rule we can write the joint distribution as a product of
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Causal generative process:
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Chain rule

Using the chain rule we can write the joint distribution as a product of
conditionals:

Causal generative process:

We haven't made any assumption so far.

p(x  , z  ) =1:T 1:T p(z  )p(x  ∣z  )  p(z  ∣x  , z  )p(x  ∣x  , z  )1 1 1
t=2

∏
T

t 1:t−1 1:t−1 t 1:t−1 1:t
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Conditional independence assumptions:

The joint distribution simpli�es as:

The state-space model family

This is the family of state-space models (SSMs) introduced by Kalman
in 1960.

Linear Gaussian SSMs, with a continuous state.

Hidden Markov models, with a discrete state.

p(z  ∣x  , z  ) =t 1:t−1 1:t−1 p(z  ∣z  )t t−1

p(x  ∣x  , z  ) =t 1:t−1 1:t p(x  ∣z  )t t

p(x  , z  ) =1:T 1:T p(z  )p(x  ∣z  )  p(z  ∣z  )p(x  ∣z  ).1 1 1
t=2

∏
T

t t−1 t t

R.E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Transactions of the ASME – Journal of Basic Engineering, 1960.
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https://asmedigitalcollection.asme.org/fluidsengineering/article/82/1/35/397706/A-New-Approach-to-Linear-Filtering-and-Prediction


Transition distribution:

where  and 

.

Emission distribution:

where  and .

Linear Gaussian SSM

In the linear Gaussian SSM, the two conditional distributions are
de�ned by:

p  (z  ∣z  ) =θ  z t t−1 N(z  ;μ  (z  ),Σ  (z  )),t θ  z t−1 θ  z t−1

μ  (z  ) =θ  z t−1 A  z  t t−1

Σ  (z  ) =θ  z t−1 Q  t

p  (x  ∣z  ) =θ  x t t N(x  ;μ  (z  ),Σ  (z  )),t θ  x t θx t

μ  (z  ) =θ  x t B  z  t t Σ  (z  ) =θ  x t R  t

Tractable exact posterior inference using Kalman �lter/smoother.
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Transition distribution:

where  and  are non-linear

functions of .

Emission distribution:

where  and  are non-linear

functions of .

The Deep Markov Model

corresponds to a VAE with a

1st-order Markov model on the

latent state.

Deep Markov Model

Similar model except that the distributions are now parametrized by a
neural network.

p  (z  ∣z  ) =θ  z t t−1 N(z  ;μ  (z  ),Σ  (z  )),t θ  z t−1 θ  z t−1

μ  θ  z
Σ  θ  z

z  t−1

p  (x  ∣z  ) =θ  x t t N(x  ;μ  (z  ),Σ  (z  )),t θ  x t θx t

μ  θ  x
Σ  θ  x

z  t

R. Krishnan, U. Shalit, D. Sontag, Deep Kalman Filters, NeurIPS Workshops on Advances in Approximate Bayesian Inference & Black Box Inference, 2015.

R. Krishnan, U. Shalit, D. Sontag, Structured Inference Networks for Nonlinear State Space Models, AAAI 2017. 17 / 24

http://arxiv.org/pdf/1511.05121v1.pdf
http://arxiv.org/pdf/1609.09869.pdf


General umbrella for all (causal) DVAEs:

where

De�nition of DVAEs generative model

and , and  are non-linear functions of 

 and , respectively.

p  (x  , z  ) =θ 1:T 1:T  p  (z  ∣x  , z  )p  (x  ∣x  , z  ),
t=1

∏
T

θ  z t 1:t−1 1:t−1 θ  x t 1:t−1 1:t

p  (z  ∣x  , z  ) =θ  z t 1:t−1 1:t−1

N(z  ;μ  (...), diag{v  (...)});t θ  z θ  z

p  (x  ∣x  , z  ) =θ  x t 1:t−1 1:t

N(x  ;μ  (...), diag{v  (...)});t θ  x θ  x

{μ  , v  }θ  z θ  z {μ  , v  }θ  x θ  x

{x  , z  }1:t−1 1:t−1 {x  , z  }1:t−1 1:tTo simplify notations, we do not distinguish between the cases  and  when writing the chain
rule.

t = 1 t > 1
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RNN parametrization of DVAE generative
model

Recall the DVAE generative model:

The conditional distributions are parametrized by an RNN, for
instance:

where .

In this example, one single RNN internal state variable  is used to

generate both  and . This is totally arbitrary and we could use

p  (x  , z  ) =θ 1:T 1:T  p  (z  ∣x  , z  )p  (x  ∣x  , z  ).
t=1

∏
T

θ  z t 1:t−1 1:t−1 θ  x t 1:t−1 1:t

p  (z  ∣x  , z  ) =θ  z t 1:t−1 1:t−1 N(z  ;μ  (h  ), diag{v  (h  )});t θ  z t θ  z t

p  (x  ∣x  , z  ) =θ  x t 1:t−1 1:t N(x  ;μ  (z  ,h  ), diag{v  (z  ,h  )});t θ  x t t θ  x t t

h  =t σ(W  x  +xh t−1 W  z  +zh t−1 W  h  +hh t−1 b  )h

h  t
x  t z  tGated extensions of RNNs such as LSTM or GRU networks can also be used.
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Applications
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Inference in DVAEs

We are interested in computing the posterior distribution:

Except for "simple" models such as the linear-Gaussian SSM, this
posterior is intractable.

p  (z  ∣x  ) =θ 1:T 1:T  p  (z  ∣z  , x  ).
t=1

∏
T

θ t 1:t−1 1:T
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Inference in DVAEs

We are interested in computing the posterior distribution:

Except for "simple" models such as the linear-Gaussian SSM, this
posterior is intractable.

As for standard VAEs, we need an inference model:

where typically we have:

and ,  are non-linear functions of .

p  (z  ∣x  ) =θ 1:T 1:T  p  (z  ∣z  , x  ).
t=1

∏
T

θ t 1:t−1 1:T

q  (z  ∣x  ) =ϕ 1:T 1:T  q  (z  ∣z  , x  ),
t=1

∏
T

ϕ t 1:t−1 1:T

q  (z  ∣z  , x  ) =ϕ t 1:t−1 1:T N(z  ;   (...), diag{  (...)}),t μ~ϕ v~ϕ

  μ~ϕ  v~ϕ z  , x  1:t−1 1:T 20 / 24



RNN parametrization of DVAE inference model

One possible parametrization of the conditional posterior of  is given
as follows:

where

encodes the causal dependencies (we may or may not use the same RNN as

for the generative model),

encodes the non-causal dependencies.

We can compute the ELBO as in VAE. However, both the
reconstruction and regularization terms involve an intractable

z  t

q  (z  ∣z , x  ) =ϕ t 1:t−1 1:T N(z  ;   (  ,   ), diag{  (  ,   )}),t μ~ϕ h
→

t g
←
t v~ϕ h

→

t g
←
t

 =h
→

t σ(  x  +W
→

xh t−1  z  +W
→

zh t−1   +W
→

hhh
→

t−1  )b
→

h

  =g
←
t σ(W  x  +xg t    +W

←

gg g
←
t+1  )b

←

h

21 / 24



Di�erent models in the literature belong to the DVAE family (di�erent
conditional assumptions):

STORN
J. Bayer and C. Osendorfer, Learning Stochastic Recurrent Networks, arXiv preprint

arXiv:1411.7610, 2014

VRNN J. Chung et al., A recurrent latent variable model for sequential data, NeurIPS, 2015

SRNN* M. Fraccaro et al., "Sequential neural models with stochastic layers", NeurIPS 2016

DMM*
R. Krishnan et al., Structured Inference Networks for Nonlinear State Space Models, AAAI,

2017

DSAE Y. Li and S Mandt, Disentangled sequential autoencoder, ICML, 2018

(N)C-
RVAE*

S. L. et al., A recurrent variational autoencoder for speech enhancement, IEEE ICASSP,

2020

HIT-DVAE
X. B. et al., HiT-DVAE: Human Motion Generation via Hierarchical Transformer Dynamical

VAE, arXiv, 2022

In (Girin et al., 2020), we:

review and discuss several DVAE models with uni�ed notations,

L. Girin, S. L., X. Bie, J. Diard, T. Hueber, X. Alameda-Pineda, "Dynamical Variational Autoencoders: A Comprehensive Review", arXiv preprint arXiv:2008.12595,
2020.
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https://arxiv.org/pdf/1411.7610.pdf
https://papers.nips.cc/paper/5653-a-recurrent-latent-variable-model-for-sequential-data.pdf
https://papers.nips.cc/paper/6039-sequential-neural-models-with-stochastic-layers.pdf
http://arxiv.org/pdf/1609.09869.pdf
https://arxiv.org/pdf/1803.02991
https://hal.archives-ouvertes.fr/hal-02329000/document
https://arxiv.org/abs/2204.01565
https://arxiv.org/pdf/2008.12595.pdf
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Applications & Remarks

So far we have successfully applied DVAEs to:

Speech (power spectrogram) analysis-resynthesis

Unsupervised speech enhancement (noise distribution learned at
test time)

Human motion modeling and prediction (HIT-DVAE)

Single and multiple (bounding-box) object tracking

Open research questions:

How do interpret ?

How to ensure  carries information (specially in auto-regressive
models)?

Can DVAEs handle multiple modalities? How to design the latent
spaces?

z

z

23 / 24

https://hal.archives-ouvertes.fr/hal-03295657/
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Thank you

Online material available at:

https://team.inria.fr/robotlearn/dvae/

https://dynamicalvae.github.io/

https://sleglaive.github.io/
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