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Unsupervised learning

model distribution true data distribution Find 6 so that p(x; 0)
e sameee is the closest to the
p*(X): minimize the
Kullback-Leibler (KL)
divergence.

po(x) \ / p*(x)

~_ min D, (p* (x) || p(x;0))

measure of fit

= mgin E,«(x) [Inp” (x) — Inp(

= max E,«(x) [Inp(x; 0)]

Unknow true data distribution p*(x), but we have access to a dataset
iid

of i.i.d samples D = {x; '~ p*(x)}Y_,. Replace the intractable
expectation by a Monte Carlo estimate:
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Latent-variable-based DGMs define the model distribution as a
marginal distribution, by introducing a low-dimensional latent random
vector:

p(x;0) = [ p(x|z; O)p(z)dz.

model distribution

prior

O

latent space

generative
neural
network

data space

GANs and VAEs are two examples of latent-variable-based DGM, but
p(x|z; 0) is only defined explicitely (i.e. analytically) for VAEs.
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Sequential data

Most of the focus of deep generative modeling has been on static
data (e.g. images).

But many data have an inherent sequential/temporal nature (e.g.
videos, music, speech, text).

We may be interested in learning the temporal dependencies between
the data (observed and latent) at different time frames.

R SR ]
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https://en.wikipedia.org/wiki/The_Horse_in_Motion

Today's presentation

Objective:

Introduce and discuss a class of models called Dynamical Variational
Autoencoders (DVAEs) that encompass a large subset of temporal
extensions of VAE that have been proposed in the literature.

Outline:

1. Variational autoencoders

2. Dynamical variational autoencoders

This presentation is mostly based on:

L. Girin et al., "Dynamical Variational Autoencoders: A Comprehensive Review", arXiv preprint
arXiv:2008.12595, 2020.

S. L. et al., "A Recurrent Variational Autoencoder for Speech Enhancement”, IEEE ICASSP, 2020.
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https://arxiv.org/pdf/2008.12595.pdf
https://arxiv.org/pdf/1910.10942.pdf

Variational autoencoders

e Generative model
e Inference model and training

e Application examples

D.P. Kingma and M. Welling, Auto-Encoding Variational Bayes, ICLR 2014.

D.J. Rezende et. al, Stochastic backpropagation and approximate inference in deep generative models, ICML 2014. 4/24


https://arxiv.org/pdf/1312.6114.pdf
https://arxiv.org/pdf/1401.4082.pdf

Generative model

Let x € R? and z € RX be two random vectors (typically K < D).
The generative model is defined by:

p(x;0) =1 p(x|z; 0)p(z)dz.

e The prioris a standard Gaussian po(2)
distribution: 008
OO
) OOOOO
p(z) = N(z;0,1). NS
Ox0O
O3

* The likelihood is parametrized with a
generative/decoder neural network, e.g. vo(z)

p(x|z;0) = N (x;4(z), diag {vy(2)}) ,

where 6 denotes the parameters of the
decoder network.
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Parameters estimation

e Direct maximum marginal likelihood estimation is intractable due
to non-linearities.

e For any distribution ¢(z|X; ¢), we have (Neal and Hinton, 1999; Jordan et
al. 1999)

Inp(x; 0) = L(x; ¢, 0) + Dxr(q(z|x; @) || p(z[x;0)),

where L(x; @, 0) is the evidence lower bound (ELBO), defined by

L(X; ¢7 (9) — Eq(z|x;¢) [lnp(x, Z, (9) — IHQ(Z‘X; ¢)]

R.M. Neal and G.E. Hinton, "A view of the EM algorithm that justifies incremental, sparse, and other variants", in M. I. Jordan (Ed.), Learning in graphical models,
Cambridge, MA: MIT Press, 1999.

M.I. Jordan et al., "An introduction to variational methods for graphical models", Machine learning, 1999. 6/24


http://www.cs.toronto.edu/~radford/ftp/emk.pdf
https://people.eecs.berkeley.edu/~jordan/papers/variational-intro.pdf
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To fully define the objective function, we need to specify the
inference model g (z|x; @).
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Variational autoencoders

e Generative model
 Inference model and training

e Application examples

D.P. Kingma and M. Welling, Auto-Encoding Variational Bayes, ICLR 2014.

D.J. Rezende et. al, Stochastic backpropagation and approximate inference in deep generative models, ICML 2014. 7/24


https://arxiv.org/pdf/1312.6114.pdf
https://arxiv.org/pdf/1401.4082.pdf

Inference model

The inference model (approximate posterior) is typically defined by:

q(z|x; @) = N (z; u4(x), diag {vg(x)}),

where the mean and variance vectors are provided by the encoder
neural network.
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ELBO

The ELBO is now fully defined:

L(X; ¢7 (9) — Eq(z|x;¢) [lnp(xa Z; ‘9) _ IHQ(Z|X; ¢)]
~ Eyon Inp(x]2:0)] — D (q(2lx; 9) | p(2)).

-~ ~\”

reconstruction accuracy regularization
e prior: p(Z) =N (Z; 0, I)
« likelihood model:  p(x|z; 0) = N (x; u,(z), diag {vy(z)})
e inference model:  ¢(z|x; ) =N (Z;ﬂ¢(X), diag {vs(x)})
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ELBO

The ELBO is now fully defined:

L(X; ¢7 (9) — Eq(z|x;¢) [lnp(xa Z; ‘9) _ IHQ(Z|X; ¢)]
~ Eyon Inp(x]2:0)] — D (q(2lx; 9) | p(2)).

-~ ~\”

reconstruction accuracy regularization

e prior: p(Z) =N (Z; 0, I)
e likelihood model:  p(x|z; ) = N (x; u,(z), diag {vy(z)})
e inference model:  ¢(z|x; ) =N (z; 1 y(x), diag {vy(x)})

The reconstruction accuracy term is approximated with a Monte Carlo
estimate:

1 X i

By (x| 0)] ~ o X Wp(x7,:0), 7 ~ q(zlx; ).
r=1
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ELBO

The ELBO is now fully defined:

L(X; ¢7 (9) — Eq(z|x;¢) [lnp(x, Z; ‘9) _ IHQ(Z|X; ¢)]
~ Eyn Inp(x]2:0)] — D (q(2lx; 9) | p(2)).

-~ N

reconstruction accuracy regularization

e prior: p(z) = N(z;0,1)
e likelihood model:  p(x|z; ) = N (x; u,(z), diag {vy(z)})
e inference model:  ¢(z|x; ) =N (z; 1 y(x), diag {vy(x)})

The reconstruction accuracy term is approximated with a Monte Carlo
estimate, using the so-called reparametrization trick:

1 f € ~N(0,I)

Eq(z|x;¢) [lnp(X|Z; 9)] ~ R 2 111p(X|ir; 9)’ {Z — ﬂ¢(X) + diag {V¢(
r=1 o
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Remarks

Hy(Z)
O
o868
2~ o)~ NO.1) [] 88880 s (saming ) % ~ p(x[2;0) = N (145(2), diag {va(2)})
O

e

vo(z)

e Note that the encoder was only introduced in order to estimate
the parameters of the decoder.

e We do not need the encoder for generating new samples.

e Butitis useful if we need to do inference.
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Variational autoencoders

e Generative model
e Inference model and training

» Application examples
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Generation of a speech signal

VAE DVAE

The lack of temporal modeling is clearly a problem for VAE. In DVAE
we observe: phoneme structure, voiced/unvoiced phonemes,
coarticulation and silences.

Phase estimated with Griffin-Lim algorithm.

12/24



Dynamical VAEs

e Generative model
e Inference model and training

e Applications
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Modeling sequential data
We are now interested in modeling sequential data:

e Observed sequence X1.7 = {X; € RD}tT:1
e Latent sequencezi.r = {z, € RI}L,

Generative modeling consists in defining the joint distribution with
temporal dependencies:

p@(xlzTa Zl:T),

rather than the frame-wise joint distribution (as a vanilla VAE does):

T

pgAE(XlzTazlzT) = 1 po(xs,2)
=1
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Chain rule

Using the chain rule we can write the joint distribution as a product of
conditionals:

T

p(X1:T, Zl:T) :p(Zl)p(X1\Z1) Hp(Zt\Xlzt—l, Z1:t—1)p(Xt\X1:t—1, Zl:t)
=2
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Chain rule

Using the chain rule we can write the joint distribution as a product of
conditionals:
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Chain rule

Using the chain rule we can write the joint distribution as a product of
conditionals:

T

p(X1:T, Zl:T) :p(Zl)p(X1\Z1) Hp(Zt\Xlzt—l, Z1:t—1)p(Xf\X1:t—1, Zl:t)
=2

Causal generative process:

We haven't made any assumption so far.
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The state-space model family

Conditional independence assumptions: @ Q @
° p(Zt‘Xlzt—lazlzt—l) :P(Zt|Zt—1) l

y p(xtlxlzt—17 Zl:t) :p(Xt‘Zt)
The joint distribution simplifies as:

T

p(xv.7,21:7) = p(z1)p(x1]21) [1 p(Z|2-1)p(xi| 7).
=2

This is the family of state-space models (SSMs) introduced by Kalman
in 1960.

e Linear Gaussian SSMs, with a continuous state.

e Hidden Markov models, with a discrete state.

15/ 24
R.E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Transactions of the ASME - Journal of Basic Engineering, 1960.


https://asmedigitalcollection.asme.org/fluidsengineering/article/82/1/35/397706/A-New-Approach-to-Linear-Filtering-and-Prediction

Linear Gaussian SSM

In the linear Gaussian SSM, the two conditional distributions are
defined by:

e Transition distribution: @ e

o, (2|7 1) = N (23 g, (21), Zo, (2:1)), o é o
where py (2,-1) = A;z;_1 and
292 (Zt—l) = Q..

e Emission distribution:
Po, (X|z:) = N (X3 Mo, (2:), o, (21)),

where ﬂgx (Zt) = BtZl‘ and ZQX (ZZ) = Rt-

Tractable exact posterior inference using Kalman filter/smoother.
16/ 24



Deep Markov Model

e Transition distribution: @ @
po,(2|z,1) = N(z;5 9, (2,-1), Zo, (2-1)),
@) & @

The Deep Markov Model

where u, and Xy, are non-linear

functions of z,_.
corresponds to a VAE with a

e Emission distribution: 1st-order Markov model on the

latent state.

Po, (X/|z;) = N (x5 pg, (2:), X, (2:)),

where u, and Xy _are non-linear
functions of z;.

Similar model except that the distributions are now parametrized by a

neural network. . . . .
R. Krishnan, U. Shalit, D. Sontag, Deep Kalman Filters, NeurlPS Workshops on Advances in Approximate Bayesian Inference & Black Box Inference, 2015.

R. Krishnan, U. Shalit, D. Sontag, Structured Inference Networks for Nonlinear State Space Models, AAAI 2017. 17/ 24


http://arxiv.org/pdf/1511.05121v1.pdf
http://arxiv.org/pdf/1609.09869.pdf

Definition of DVAEs generative model

General umbrella for all (causal) DVAEs:

T 'Q.@
pe(XLT,Zl:T) — Hpez (Zr|X1:t—1,let—1)pex (Xt\XL %’;@é‘
BEOES

where

* pPo, (Zt|X1:t—1, Zl:t—l) —
N(z; py, (--.), diag{ve,(---) };

* Do, (Xt‘xlzt—la Zl:t) —
N (x;; pg, (---), diag{va, (--) });

and {4y, , Vg, }. and {u,_, Vg, } are non-linear functions of
{o’%lmpﬂfy%bt@tib}sﬁﬁ@d{&mﬁtmﬁ:é}bE%ﬁ&%QELV&%s t =1and¢ > 1 when writing the chain

rule.
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RNN parametrization of DVAE generative
model

Recall the DVAE generative model:

T

pe(XLT,Zl:T) — Hpez (Zt\Xlzr—1,ler—1)p9x (Xt|X1:t—17Z1:t)~
=1

The conditional distributions are parametrized by an RNN, for
instance:

 po,(Z/|X1:-1, Z1:4-1) = N (25 uy, (h;), diag{ve, (h;)});

 po, (X¢|X1:0-1,21:) = N(X¢; pg, (21, hy), diag{ve, (z;, h;)});

where hy = o(Wyix,—1 + Wznzi—1 + Wishi—1 + by).

In this example, one single RNN internal state variable h; is used to
gEAtrste o NRNAR 82D, SFhS 1sor GRY IRebreriis eaaindaveceéould use
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Dynamical VAEs

e Generative model
» Inference model and training

e Applications
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Inference in DVAESs

e We are interested in computing the posterior distribution:

T

pe(leT\XlzT) — Hpe(Zt\let—l,XlzT)-
=1

Except for "simple" models such as the linear-Gaussian SSM, this
posterior is intractable.
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Inference in DVAESs

e We are interested in computing the posterior distribution:

T

pe(leT\XlzT) — Hpe(Zt\let—l,XlzT)-
=1

Except for "simple" models such as the linear-Gaussian SSM, this
posterior is intractable.

e As for standard VAEs, we need an inference model:

T

go(z1.71x1.7) = [1 9¢(2d|Z1:-1, X1:7),
=1

where typically we have:

qu(Zt\Zl:t—l, Xl:T) — N(Zt;ﬁqﬁ(‘")? diag{\7¢(...)}),

and ﬁd,, i7¢ are non-linear functions of 2;.,_1, X1.7. 20/ 24



RNN parametrization of DVAE inference model

One possible parametrization of the conditional posterior of z; is given
as follows:

~ 3 TN e~ 4
q¢(2:|214-1,%1.7) = N(z5 i g(hy, g,), diag{Vy(h,, g)}),

where

— — - =

° ht:U(WhXt 1‘|'Wth 1+ Wprh, 1‘|'bh)

encodes the causal dependencies (we may or may not use the same RNN as

for the generative model),

<

— —
* 8, = 0(WigX; + Weeg, 1 + by)
encodes the non-causal dependencies.

We can compute the ELBO as in VAE. However, both the
reconstruction and regularization terms involve an intractable
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Different models in the literature belong to the DVAE family (different
conditional assumptions):

J. Bayer and C. Osendorfer, Learning Stochastic Recurrent Networks, arXiv preprint

STORN arXiv:1411.7610, 2014

VRNN J. Chung et al., A recurrent latent variable model for sequential data, NeurlPS, 2015

SRNN* M. Fraccaro et al., "Sequential neural models with stochastic layers", NeurlPS 2016

DMM* R. Krishnan et al., Structured Inference Networks for Nonlinear State Space Models, AAAI,
2017

DSAE Y. Li and S Mandt, Disentangled sequential autoencoder, ICML, 2018

(N)C- S. L. et al., Arecurrent variational autoencoder for speech enhancement, IEEE ICASSP,

RVAE* 2020

X. B. et al., HiT-DVAE: Human Motion Generation via Hierarchical Transformer Dynamical

HIT-DVAE  |Ae aixiv, 2022

IN (Girin et al., 2020), we:

e review and discuss several DVAE models with unified notations,

L. Girin, S. L., X. Bie, J. Diard, T. Hueber, X. Alameda-Pineda, "Dynamical Variational Autoencoders: A Comprehensive Review", arXiv preprint arXiv:2008/12595,
2020.


https://arxiv.org/pdf/1411.7610.pdf
https://papers.nips.cc/paper/5653-a-recurrent-latent-variable-model-for-sequential-data.pdf
https://papers.nips.cc/paper/6039-sequential-neural-models-with-stochastic-layers.pdf
http://arxiv.org/pdf/1609.09869.pdf
https://arxiv.org/pdf/1803.02991
https://hal.archives-ouvertes.fr/hal-02329000/document
https://arxiv.org/abs/2204.01565
https://arxiv.org/pdf/2008.12595.pdf

Dynamical VAEs

e Generative model
e Inference model and training

» Applications

22/24



Applications & Remarks

So far we have successfully applied DVAEs to:

Speech (power spectrogram) analysis-resynthesis

Unsupervised speech enhancement (noise distribution learned at
test time)

e Human motion modeling and prediction (HIT-DVAE)

Single and multiple (bounding-box) object tracking
Open research guestions:

e How do interpret z7?

e How to ensure Z carries information (specially in auto-regressive
models)?

e Can DVAEs handle multiple modalities? How to design the latent
spaces?
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https://hal.archives-ouvertes.fr/hal-03295657/
https://arxiv.org/abs/2106.12271
https://arxiv.org/abs/2204.01565
https://arxiv.org/abs/2202.09315

Thank you

Online material available at:
https://team.inria.fr/robotlearn/dvae/
https://dynamicalvae.github.io/

https://sleglaive.github.io/


https://team.inria.fr/robotlearn/dvae/
https://dynamicalvae.github.io/
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